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Abstract

We consider the problem of an auctioneer who faces the task
of selling a good (drawn from a known distribution) to a set
of buyers, when the auctioneer does not have the capacity
to describe to the buyers the exact identity of the good that
he is selling. Instead, he must come up with a constrained
signalling scheme: a (non injective) mapping from goods
to signals, that satisfies the constraints of his setting. For
example, the auctioneer may be able to communicate only
a bounded length message for each good, or he might
be legally constrained in how he can advertise the item
being sold. Each candidate signaling scheme induces an
incomplete-information game among the buyers, and the
goal of the auctioneer is to choose the signaling scheme
and accompanying auction format that optimizes welfare.
In this paper, we use techniques from submodular function
maximization and no-regret learning to give algorithms for
computing constrained signaling schemes for a variety of
constrained signaling problems.

1 Introduction

At a cafe in Portlandia [ABK11], customers about to
order the chicken ask the waitress for more details
regarding its source. She informs them that the chicken
is a heritage breed, woodland raised, and has been fed a
diet of sheep’s milk, soy, and hazelnuts, and she assures
them the chicken is indeed local, free range, and so on.
Ah but, the customers ask, is that USDA Organic, or
Oregon Organic, or Portland Organic?

Organic certifications are a means by which a seller
can communicate parameters of a product to potential
buyers. The certification system creates a simplified
and practical, yet sufficiently expressive, set of signals
as the basis for this communication.! Signaling is
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1Unfortunately for the waitress in Portlandia, the language
was not sufficiently expressive for her customers. They decided
to drive to the farm to visit the chicken’s home.

common throughout complex markets. The USDA
classifies meat into a small number of discrete grades.
Graduating high-school students signal their potential
to employers and colleges through SAT scores and
transcripts. Targeted advertising sales in both online
and offline media describe viewers to ad buyers through
a fixed and (comparatively) small set of demographic
information.?

We consider a market with one seller, one or more
buyers, and multiple potential items. A signaling
scheme for the market maps each potential item to
a signal. The seller commits to a signaling scheme
up front and sells the signal induced by the item
through a sale mechanism (auction, posted price, etc.).
This choice of signaling scheme induces a game among
buyers: the buyers find themselves looking to buy an
item in the mechanism without knowing what item is
for sale, but rather only knowing that it is some item
that induced a particular signal from a known signaling
scheme. In other words, a signaling scheme is a fixed
bundling of the goods that the seller commits to up
front. In this work, we focus on designing signaling
schemes and corresponding auction mechanisms that
maximize social welfare. Once the seller commits to
a particular signaling scheme, the second price auction
maximizes welfare with respect to the agreed upon
bundling, and so without loss of generality, the “auction
mechanism” can be taken to be the simple second price
auction. Our goal is to (subject to various constraints)
define signaling schemes that maximize the expected
welfare in the induced bundle auction.

Practical settings impose a variety of constraints
on feasible signaling schemes. In many markets, the
amount of information that can be conveyed is highly
constrained. In online advertising auctions, the sheer
volume of sales and diversity of viewers make it imprac-
tical to communicate precise details of every viewer. In
addition, various reputational and legal constraints may
restrict a seller from announcing certain signals for cer-

2See Milgrom [Mill0] and Levin and Milgrom [LM10] for
further discussion of signaling in various markets including online
advertising, wheat sales, diamond sales, and spectrum auctions.



tain items: e.g., organic products must pass a certifica-
tion process from the corresponding agency to be sold
under that label.

The main question we address is a computa-
tional one: how should an auctioneer compute a
welfare-mazximizing signaling scheme in the presence of
exogenously-defined signaling constraints? We first ob-
serve that welfare maximization in constrained signaling
is a convex function maximization problem, and so there
is always a deterministic signaling scheme which maxi-
mizes expected welfare. Furthermore, fixing the signal-
ing scheme, the optimal mechanism for welfare maxi-
mization is the second-price auction. These two facts
significantly simplify our analysis, as we now only have
to search over deterministic signaling schemes. We also
observe that for second-price auctions revenue and wel-
fare are intimately related: the revenue is at most the
welfare after excluding an arbitrary player. This allows
us to extend some of our welfare results to the revenue
setting.

As our primary signaling constraint, we focus on
communication-bounded signaling in which the con-
straint is the amount of communication which can be
used to send the signal. We consider settings in which
goods are points in a very high dimensional space 2 =
R?, where d is much too large to communicate the en-
tire vectors (e.g. d might be exponential in the number
of bidders n). In these settings, we first consider agents
who have geometric valuations, defined in terms of ei-
ther the distance or the angle from the realized good
to some target good or set of goods. Thus if d repre-
sents, for example, the vector of potential features of
an item, then the distance or angle represents how close
the actual item is to the agent’s ideal item (see Sec-
tion 3 for a more precise motivation). However, this
valuation class is actually much more general; in fact
it can represent arbitrary valuations over m distinct
goods, although not succinctly, by setting d = 2™ and
having a separate dimension for each potential bundle
of goods. We use techniques from no regret learning
and metric embeddings to give highly space efficient
signaling schemes that achieve nearly the optimal wel-
fare (compared even to the optimal unconstrained sig-
naling scheme), when values are drawn according to a
known prior, and in one instance, even against adversar-
ially chosen goods, and without knowledge of the prior
distribution over valuations. We make a novel use of
no-regret learning algorithms as compression schemes.
Specifically, we view the item for sale as a function label-
ing each bidder with their valuation for the item. Given
a realized item, we learn this function using the mul-
tiplicative weights update rule, and then communicate
the learned function by sending only the identity of the

(very small number of) update vectors, which results
in a low-communication scheme. The communication
required by these schemes depends only logarithmic on
the dimension d and allows for an infinite set of poten-
tial goods.

We next study agents with arbitrary valuations and
show how to completely eliminate the dependence on
the dimension for a bounded number of potential goods
with a constant loss in the approximation factor. Our
technique here extends to other exogenously imposed
constraints, called bipartite signaling, in which we are
given a set of feasible signals, and each item is allowed to
be mapped to any one of a subset of these signals.? For
these results, we make the unrealistic assumption that
the seller knows the set of values of the buyers precisely.
Our motivation for studying this setting is two-fold: for
one, we hope that it will lead to mechanisms for the un-
known valuations case, and indeed some of our results
carry through when the amount of uncertainty in the
unknown valuations case is bounded in some sense; for
another, in large markets with limited numbers of val-
uation types, an auctioneer can be relatively confident
regarding the set of valuations in the market. When val-
uations are known to the auctioneer, we are able to re-
duce welfare maximization in communication-bounded
bipartite signaling to submodular function maximiza-
tion subject to a matroid constraint, thus implying a
(1 — 1/e)-approximation for welfare maximization with
respect to the optimal communication-bounded signal-
ing scheme. Starting from our approximately welfare-
maximizing signaling scheme, and using the connection
between revenue and welfare described above as well
as careful “mixing” of different signals, we also devise
a constant approximation for revenue maximization in
the communication-bounded signaling setting for auc-
tioneers that are constrained to use second-price auc-
tions. We further show how to extend some of our
results to the unknown valuation case when the prior
has constant-size support. We couple our results with
a hardness result: even in the communication-bounded
signaling setting with known valuations, it is NP-hard
to approximate either objective to a factor better than
(1 —1/e) via a reduction from max-cover.

Related Work The study of markets with infor-
mation asymmetries between sellers and buyers was first
introduced by Akerlof [Ake70]. Since then, a rich lit-
erature has examined the effects of information reve-
lation, i.e. signaling, in markets and auctions. Most
notably, the “Linkage principle” of Milgrom and We-

SFor example, a signaling scheme for online advertising auc-

tions may consist of all potential tuples of attributes: age, loca-
tion, ethnicity, gender, and income, say. A viewer can be matched
to any tuple that matches his true characteristics.



ber [MW82] shows that, under some conditions, a seller
always increases his revenue by signalling more infor-
mation about the good for sale. However the linkage
principle requires fairly strong assumptions regarding
the joint distribution of player valuations for the good.
In particular, it rarely holds in settings where players
come from different demographics with negatively cor-
related values for the good. A review of the literature
studying the limits of the linkage principle can be found
in Emek et al [EFG'12]. The non-applicability of the
linkage principle to the settings we consider goes even
beyond these limitations — even when full transparency
is optimal for an auctioneer, the presence of constraints
on the amount and nature of information revealed by
our signalling schemes introduces intricate tradeoffs in
choosing which information to reveal. Quantifying those
tradeoffs inevitably requires examination of these set-
tings with an optimization lens, as we do here.

Our work is inspired by, and builds on, recent pa-
pers that examine optimal signalling schemes in uncon-
strained settings. Specifically, Emek et al [EFGT12]
and Miltersen and Sheffet [MS12] examine signalling for
revenue maximization in a second price auction, where
no constraints are placed on the number or nature of
signals. In such settings, full information revelation is
optimal for an auctioneer interested in maximizing wel-
fare, and both works show that a revenue-maximizing
scheme can be computed efficiently when player valu-
ations are known. Emek et al [EFGT12] also obtain
partial results for revenue maximization when player
valuations are drawn from a Bayesian prior. Our re-
sults can be thought of as the extension of these works
to settings where social, legal, or practical constraints
are placed on the auctioneer’s signaling policy.

We also mention some results that are related to
ours in the techniques used. In the geometric setting
considered in Section 3, in which players value goods
y € R? according to inner product valuations, our com-
munication bounded signaling scheme applies the multi-
plicative weights framework of Arora, Hazan, and Kale
[AHK12]. We use multiplicative weights in an unusual
way, both as a no-regret learning algorithm and as a
compression scheme. That is, we use both the fact that
multiplicative weights can quickly learn a hypothesis y
that closely approximates a vector y with respect to a
fixed number of inner product valuations, and the fact
that the hypothesis i can be concisely communicated by
transmitting only the update operations of multiplica-
tive weights, rather than the vector ¥ itself. We are not
aware of multiplicative weights being used explicitly as
a compression scheme elsewhere, although this is related
to the use that no-regret algorithms have recently found
in differential privacy [RR10, HR10, GRU12].

In Section 4, we point out that the special case
of bipartite signaling where the graph is complete is
technically equivalent to the clustering problem con-
sidered in [MWO09]. Moreover, the problem of com-
puting a revenue-maximizing bundling of goods con-
sidered in Ghosh et al. [GNS07] is both conceptually
and technically similar to the optimization problem we
face in our revenue-maximizing scheme (Section 4.2).
The idea of “merging” signals in our setting is inspired
by their algorithm, though the constraint on the num-
ber of signals in our setting poses additional techni-
cal hurdles. The results of Section 4 also heavily use
techniques from the combinatorial auctions literature
([Fei06, DS06, DNS05]), as well as the submodular func-
tion maximization result of Vondrak [Von0§].

2 Preliminaries

We consider a setting in which there is a (possibly
infinite) set Q of possible items for sale, and a single
item w € 2 is drawn from a distribution p € Ag. There
is a set of m players, each of whom is equipped with
a wvaluation v; : @ — R mapping items to the real
numbers. The valuation profile (v1,...,v,) is drawn
from a distribution D. We assume that 2, p, and D
are common knowledge, while each player’s valuation v;
is private to player i. It will be useful to interpret the
possible items € as subsets of R¢, where d is a vector of
possible item features.

We assume that the realization of item w is ex-ante
unknown to the players, but known to the auctioneer.
We consider an auctioneer who first observes the drawn
item w, and then announces a string s, known as a
signal. The (possibly randomized) policy by which the
auctioneer chooses his signal, which we refer to as a
signaling scheme, is common knowledge. After players
observe the signal s, which can be thought of as a
random variable correlated with the realization of the
item w, an auction for item w is run.

We adopt the perspective of an auctioneer seeking
to optimize his choice of signaling scheme and corre-
sponding auction, with the goal of maximizing the ex-
pected welfare. With no constraints on the signal, an
auctioneer could generate optimal welfare by announc-
ing the item w and running a second-price auction. Our
focus is on a constrained auctioneer. The class of con-
strained signalling problems is defined as follows.

DEFINITION 1. A constrained signaling problem is a
family of instances, each given by:
o A set Q of items, and a distribution p € Aq over
these items.
o A set [n] of players, where each player i is equipped
by a private valuation v; : Q@ — Ry. The tuple



of valuations (vy,...,vy) s drawn from a common
prior D.
o A set of signals S, and a set F C S of valid

signaling maps.

When D is a trivial prior, i.e. (v1,...,v,) are
deterministic, we say our signaling problem has known
valuations; otherwise we say it has unknown valuations.
A solution to a constrained signaling problem is a valid
signaling scheme, defined as a distribution z € Ar
over valid signaling maps F, and corresponding auction.
We note that given a constrained signaling problem,
any valid signaling scheme induces a set of information
states, namely the pre-image of the mapping. Fixing
these information states, the well-known second-price
auction maximizes welfare. Therefore, we can assume,
without loss of generality, that the auctioneer runs a
second-price auction.

When the signaling scheme « is a point distribution,
we say the scheme is deterministic. Given x and an item
w € Q, we use z(w) to denote the random variable f(w)
for f ~ x. Moreover, given item w € ) and signal
s € §, we abuse notation and use z(w, s) to denote the
probability that f(w) = s for f ~ x. Similarly, given a
signal s € S we use z(s) to denote the probability that
f(w) = s for f ~ x and w ~ p; it is easy to see that
2() = Y eq Pu(w, 5).

A signaling scheme x induces, for each signal s,
a second-price auction where players have independent
private values.Specifically, it is a dominant strategy for
each player i to bid his value for item w ~ p conditioned
on signal s — namely v;|s, 2 1= Ef oy yop(vi(w)]f(w) =
Pwen T(W,8)pwvi(

(s)
is the player maximizing v;|s,z. Parametrized by the

valuation profile v, the resulting welfare of the auc-
tion, in expectation over all draws of the item w, is
given by welfare(xz,v) = ) s x(s)maxj_ vis,x =
Yosesmaxy_ > o x(w,s)puvi(w). Using U3(w) =
puvi(w) to denote player i’s value for item w weighted
by w’s probability, gives

wel fare(z,v) = Z m:%fc Z z(w, $)v;(w).

seS weN

s] = “) The winning player for signal s

(2.1)

In the case of unknown valuations, the expected welfare
of the auction over draws of the players’ valuations,
which we denote by welfare(x), is the expectation of
wel fare(z,v) over v ~ D.

Because the dimension of the items d is so large, it is
not possible to exactly describe them to buyers, and it is
instead necessary to employ a communication bounded
signaling scheme which places a limit on the amount
of communication that can be invested in transmitting
the signal to the agents. Informally, we say that a

signalling scheme has b-bounded length of the total
set of signals it can generate (over all possible items)
is of size at most k = 2° — note that any signal
from such a set can be indexed by using at most b
bits. We would like to compute the optimal signaling
scheme subject to these communication constraints. We
focus on two instances of this problem: we first study
geometric valuations in which we assume a particular
form of the valuations of the agents and show how
to get very close approximations to the unconstrained
optimal welfare. We then consider arbitrary valuations
and show how to get constant-factor approximations
to the optimal welfare of constrained schemes (which,
in turn, are (k/n)-approximations to the unconstrained
optimum). Our techniques for this approximation allow
us to handle further bipartite signal constraints in which
signals are labeled by subsets of features and an item can
be mapped to a signal only if the item’s features are a
superset of the features in the signal’s label.

We discuss and derive several basic structural re-
sults regarding constrained signaling schemes in Ap-
pendix A. We here summarize several of the main find-
ings:

LEMMA 2.1. For any constrained signaling problem
with unknown wvaluations, there is valid deterministic
signaling scheme which maximizes expected welfare.

LEMMA 2.2. Consider an n-player and m-item signal-
ing problem with known valuations. For every integer k,
there is a signaling scheme with k signals and welfare
at least a m fraction of that of optimal (uncon-
strained) scheme.

LEMMA 2.3. Fix an arbitrary constrained signaling
problem with unknown valuations. Let i be an arbi-
trary player. The revenue of the revenue-optimal signal-
ing scheme is at most the welfare of the welfare-optimal
signaling scheme for all players other than i’.

with  geometric

3 Constrained signaling

valuations

In this section, we consider signaling schemes in which
items w €  correspond to points in d dimensional
Euclidean space R?. In such settings, we consider
valuation functions which are also parameterized by
points v; € RY.  Natural valuation functions then
include inner products (i.e. v;(w) = (w,v;)) and
distances (i.e. v;(w) = |lw — v;]]). We think of d as
being very large, and so we will be concerned with space
bounded signaling schemes, defined to be schemes that
can communicate only a bounded number of bits per
signal.



DEFINITION 2. A finite set of signals S has b-bounded
length if log|S| < b. The set of b-bounded length
signaling schemes is F C S such that for each f €
F: the set of all possible signals generated by f (i.e.
Uweaf(w)) has b bounded length. We call such an f € F
a b-bounded length signaling scheme.

REMARK 3. Note that any signal in a b-bounded length
signaling scheme can be transmitted using at most b bits.

Note that in any known valuation setting, there is
always a logn-bounded length signalling scheme that
achieves full welfare: the scheme simply partitions the
items into n sets in which the ¢’th set consists of all items
that the i’th bidder likes better than anyone else. This
scheme, in effect, names the bidder who has the highest
valuation for the realized good. Our main focus in this
section will therefore be on achieving bounded length
signalling schemes in the more demanding wunknown
valuation setting, in which bidder valuations are either
drawn from a known prior, or selected by an adversary.

3.1 Inner Product Valuations Let Q = {w € RY :
[lw|]i = 1} be the set of d dimensional non-negative
real vectors with ¢; weight 1. These can be thought
of as distributions over d “features” which describe
the product w. Individuals ¢ have valuation functions
v; + £ — R parameterized by (abusing notation) a
vector v; € R? with ||v;]|c < 1. Bidder i’s valuation for
good w is defined to be v;(w) = (v;, w). Intuitively, each
component j of v; represents agent ¢’s affinity for feature
J, which can range in [—1,1]. v;(w) is agent i’s average
affinity for the distribution over features represented
by good w. Here d can be exponentially large, and
so such valuation functions are extremely general: for
example, they can represent arbitrary valuations over
goods, each bundle of which is represented by a standard
basis vector, as well as arbitrary valuations for lotteries
over goods. We wish to design good b-bounded length
signaling schemes for inner product valuations, for b as
small as possible, when bidder valuations are unknown
but drawn independently from a known prior.

3.1.1 Multiplicative Weights Signaling In this
section, we use the versatile multiplicative weights
framework of [AHKI12] to give a communication
bounded signaling scheme. The idea is the following:
we treat the realized good w €  as a function defined
over the domain of valuation vectors v;. The function
w labels each possible valuation vector v; with the real
number (v;,w). Given a realized good, we then attempt
to learn this function over the prior distribution P from
which the valuations are drawn. If we are able to “cor-
rectly” classify new examples drawn from the distribu-

tion with probability at least 1 — §/n, then with proba-
bility at least 1—4, we are able to correctly classify all of
the actual bidder valuation functions drawn i.i.d. from
P. If we know the prior P and have access to i.i.d. sam-
ples from it, then we are in a PAC-like setting, and are
able to inherit very strong PAC-like bounds: learning
algorithms with guarantees that hold for any distribu-
tion P. If we are able to learn our classifier in a way
that can be concisely communicated, then we also have
a good bounded length signalling scheme.

For ease of exposition, we first consider the known
valuation setting in which the signaling scheme can be
parameterized by the actual valuations vy, ..., v, of the
bidders*. When a good w € Q arrives, we use multi-
plicative weights to learn an e-approximate representa-
tion & with respect to the bidder valuation functions
v1,...,U, — that is, a representation @ such that for
all 4, |v;(w) — v;(@)] < e. We can do this by updating
multiplicative weights at most O(logd/e?) times using
the valuation functions themselves as loss functions. @
would itself therefore make a terrific signal — it would
approximately represent every bidder’s valuation for the
good w. However, & is also a vector in R%, and so it is
not clear why we should be able to communicate it in
a space bounded way. The key insight is that it is not
necessary to communicate & directly, but merely com-
municate which collection of valuation functions were
used to update multiplicative weights when learning &
— using this information, each bidder can reconstruct @
for themselves. (Of course, this “reconstruction” can be
automated, so the bidders can still see a natural signal).
Since each valuation function can be indexed with only
O(logn) bits, and there are only O(log d/€?) updates in
total, this gives a O(lognlogd/e?)-space bounded sig-
naling scheme that approximates the optimal welfare
within an additive loss of e. We then extend this to the
case in which the valuation functions v; are not known,
but instead drawn i.i.d. from a known prior P. This ex-
tension involves parameterizing the same multiplicative
weights signaling scheme with m i.i.d. samples from P.
Here m corresponds to the sample complexity of the
corresponding learning problem on linear valuations®
and the space used by this signaling scheme depends on
logm (since we must index updates from this set of m

TAs mentioned earlier, it is trivial to derive a bounded-length

signalling scheme in the known valuation setting without the
machinery of multiplicative weights. We introduce this machinery
in the known valuation setting and then show how it easily extends
to the unknown valuation setting.

5The sample complexity of a learning problem is, informally,
the number of samples that need to be drawn from a distribution
P, such that if we learn a hypothesis that is consistent on the
sampled points, then with high probability, the hypothesis is
consistent on new points drawn from the same distribution.



vectors). We now define our signaling scheme formally.

We define a signaling scheme fywe, 2 ...z, Param-
eterized by a no regret algorithm (in this case the mul-
tiplicative weights algorithm MW), an accuracy param-
eter €, and m vectors zi,. .., zm € R% The parameters
of the signaling scheme will be public knowledge, and
it will be used to generate b-bounded length signals as
follows:

Input: An instance w € Q.
Output: A bounded length signal s.
1: Initialize &' € R? such that &} = 1/d for all j € [d].
2: Initialize T < 1.
3: while there exists an index i such that |(z;,w) —
(z;,wT)| > ¢/2 do
4:  Let Updatep < i,
(zi,w)),
5. Forall jlet w; ™" « wj (1 —Signy - 72
6:  Normalize wT+ such that |||, =
T+ T+1
7. Let s = ((Update,, Sign, ), ...,

Signy <+ sign((z;,@T)

ZJ)

1. Let

~T+1

(Updaterp, Sign))

Algorithm 1:
aw ez .z,

Algorithm for computing the signal

THEOREM 3.1. For any €, any vectors z1i,...,2m Such
that for all i, ||zi]lec <1, and any w € Q, fuw,ez1,... 20
runs for T < wi%d rounds.

Proof. fmw,e,z,....z, (W) Tuns an instantiation of the
Multiplicative Weights Framework for Arora, Hazan,
and Kale [AHK12] for T rounds, with update parameter
€/4, and loss vectors at each round ¢ defined to be ¢! =
Sign, - 2update,- By the regret bound of Multiplicative
Weights (see e.g. [AHK12] Corollary 2.2), we have for
all z € RY with [|z|[; = 1:

4lnd

Et /\t

MH

¢ T
<72 (e
t=1

where |[¢!| denotes a coordinate-wise absolute value.
Note that this corresponds to the standard “no re-
gret bound” that readers may be more familiar with:
here the “experts” correspond to the d standard basis
vectors, x corresponds to a distribution over experts,
and the above bound simply states that multiplicative
weights achieves diminishing regret with respect to the
best expert (and therefore with respect to any distribu-
tion over experts). Taking x = w, we note that the loss
vectors £* = Sign, - Zupdate, have been constructed such
that at every round ¢, (¢*,&") — (£*,w) > €/2. Moreover,
since for all i ||zi]||co < 1, by definition for each coordi-
nate j, [¢5| < 1. Therefore, for each ¢, (|¢*|,w) < 1 since

t=1

[lw|ls = 1. Therefore, the above bound becomes:

Te Te 4lnd
g
2 7 4 €

Solving for 7', we find that it must be that 7' < 18154
as desired.

We now make two observations. The first is that
MW .21,z (W) produces bounded length signals:

COROLLARY 3.1. For any €, any vectors zi,...,2Zm
such that for all i, ||zilleec < 1, and any w € Q,
fMW,e ...,z 15 a b-bounded length signaling scheme for

h— (16logd(61;)gm+l) ) ]

Proof. Fort =1,...,T, Update, can be communicated

with logm bits and Sign, can be communicated by 1
bit. By Theorem 3.1, for all w € Q, T' < %@gd

The next is that the signal s =
((Updatey, Sign, ), . . ., (Updatey, Signy)) is sufficient
for each agent 7 to reconstruct o7+

OBSERVATION 4. 0T+ = 5T+ (s) is a function only of

the signal s = ((Update,, Signy), ..., (Updater, Signr)).

Given this observation, it is helpful to think about
the signal “really being” the vector @7 t! that well
approximates (w, z;) for all i. The signal s is just a
concise way of transmitting this vector.

First, we show that when we have known valu-
ations, the multiplicative weights signaling scheme is
competitive with the optimal b-bounded length signal-
ing scheme. In fact, we show more — that the multiplica-
tive weights signalling scheme is competitive with the
optimal unconstrained signalling scheme, even point-
wise. This proof will be a template for the more in-
teresting unknown valuations case.

THEOREM 3.2. Let OPTy = ) qPrj,li = w]-
max;e(n] vi(w) denote the optimal social welfare in the
unconstrained setting. In the known valuation setting,
the welfare obtained by the multiplicative weights signal-
ing scheme given vectors (z1,...,2n) = (V1,...,0y) is:

welfare(fMW,s,vl,...,vn,U) > OPTy — ¢

In particular, it is within € of the optimal welfare
obtained by any bounded length signaling scheme.

Proof. Fix any w € €, consider s = s(w) =
MW e, on (W), and let @7 = GTH1(s). For any
bidder i, let S = {w : [{w,v;) — (OTT1(s),v;)| < €/2}
be the set of goods whose value to bidder ¢ differs by
less than e from the value of good &7*!'. Note that



by the construction of &T*!, it must be the case that

Pr,.p[w & S|s] = 0 (because otherwise the multiplica-
tive weights signaling scheme would not have halted).
Therefore, we have Pry.,jw € S|s] = 1 and we can

calculate:
vils(w) = Ejuplvi()f(5) = 5]
= > u) - Prljlf() = ¢
JEQ
> 3" ul) - Prljls() =
jeSs
>IJIl€1§1U1( 7) - Pr[y € S|f(4) = 4]

> (vi(w) —¢€)-1

Finally, we can lower bound the expected welfare

of the multiplicative weights signaling scheme, and
compare it to the unconstrained optimal welfare. For
all v:
welfare(fyMw, e, vy ..., vy V) = Z Pr[j = w] - max v;|s(w)
wEﬂ'}NP i€[n]
> z Pr [ = w] - max(v;(w) — €)
wea’ i€n]
= OPTy —e.

We now adapt our signaling scheme slightly, and
show that it works not just in the known valuation
setting, but also in the Bayesian setting when there is
a prior P from which the valuations v; of the agents
are drawn i.i.d. Consider the slightly modified family
of signaling schemes f’; still defined in terms of an
accuracy parameter € and m vectors zi,...,2,. The
difference between f’ and f is only that f’ updates
the multiplicative weights hypothesis at most 1 time
for every vector z;, and halts once it finds a hypothesis
which does not induce an update for a sufficiently large
sequence of the z; vectors. The idea is simple: The
z; vectors will be drawn i.i.d. from the prior P. At
any given time, either the current multiplicative weights
hypothesis will have low error over new examples drawn
from P, in which case we can halt, or it will have
high error, which means that it is likely to induce an
update on one of the next few z;’s it iterates through.
Given that we have a bound on the total number of
updates that it can perform, it is not hard to see that
it must quickly find a hypothesis vector @ that well
approximates w on a large measure of examples z; drawn
from P.

Because we continue to have that &7 is updated
only on vectors z; such that |(z;,w) — (z;, @) > €/2,
our bound on the number of updates is identical as it
was for signaling scheme f, and so we have an identical
corollary:

COROLLARY 3.2. For any €, any vectors zi,...
such that for all i, ||zilleo < 1,

7Zm

and any w € €,

Input: An instance w € Q.

Output: A bounded length signal s.
1: Initialize &' € R? such that &} = 1/d for all j € [d].
2: Initialize T < 1. // Indexes Updates
3: Initialize ¢ < 0. // Counts rounds between

updates
1 lﬁlosd 1 2n
4: Let r « 2n(log (2% 5 )+log %) // Threshold to
halt.

5: for i =1 to m do
6: if [(z;,w) — (2;,0T)| > €/2 then

7: Let Update, < i, Signy < sign({z;,oT) —
(zi,w)),

8: For all j let wT‘H — wj (1 —Signg - § - 2z,5).

9: Normalize wT+ such that |[@T+]|; = 1. Let
T+ T+1. Let ¢+ 0.

10:  else

11: c+c+1

12: if ¢ > r then

13: Output

= ((Update,, Sign,), ..., (Updater, Signy))

and HALT.
14:  Output

= ((Update,, Sign, ), ..., (Update, Sign;))

Algorithm 2: Algorithm for computing the signal
fl(/IW,e,zl,.

s Zm




fuwee 2.z, 18 a b-bounded length signaling scheme for
b= (16 log d(log m+1))
= (2.

We now argue that if f is parameterized with m
vectors z; drawn i.i.d. from P (for sufficiently large m),
then in fact with high probability, firw.., . . isa
competitive signaling scheme for the actual agent val-
uations vy, ...,v,, whenever vy,...,v, are also drawn

ii.d. from P.
THEOREM 3.3. Let

2n (122554) (log (101554 +10g 20 )

1)
~ (nlogd
=0 .
(%5°)

Fiz anyw € Q, and let 24, . . .,
draws from P. Let s = fyw ..

m =

Zm and vy, ..., v, be i.i.d.

(w), and define

S(v,s) = {w : [{w,v) — (@Tﬂ(s),v)\gn €/2}. Then we
have: 6
< —
zh...,zf‘,va[w & S(v,s)] < -

Proof. We will show that for any w € Q, with proba-
bility 1 — §/2n over the choice of z1,...,zmy, s is such
that: Pryplw € S(v,s)] < §/2n, which is enough to
prove our claim. Let U = mi%d be the maximum num-
ber of update rounds that f{jw .., . can ever con-
duct, as bounded by Theorem 3.1. Since fyrw ., . .
considers running an update on each z; in sequence
but never conducts more than U updates, there must
be some consecutive sequence z;,...,z; of length at
least (j —i+ 1) > % = r on which no updates are
performed. By design, the algorithm outputs a sig-
nal after such a sequence occurs. We will show that
if Pryoplw & S(v,s)] > §/2n, then the probability
of this event occurring is at most d/2n. Note that if
Pr,.plw & S(v,s)] > §/2n, since each z; is indepen-
dently sampled from P, the probability of an update
occurring at round i is at least §/2n. Therefore, the
probability of there existing such a long sequence be-
tween updates is at most:

i)m/U < (U)efm6/2Un

)1~ 5

Setting m as in the theorem statement makes this
probability at most §/2n as desired.

A simple corollary of Theorem 3.3 is an analogous wel-
fare guarantee for the multiplicative weights signaling
scheme in the Bayesian setting:

THEOREM 3.4. Let OPTy = Y qPrjopli = ] -
max;e[n) vi(w) denote the optimal social welfare in the
unconstrained setting with known wvaluations. In the
Bayesian setting in which each v; ~ P is sampled
i.i.d.  from a known prior P, the welfare obtained
by the multiplicative weights signaling scheme given
vectors (21,...,2m) sampled independently from the
prior distribution P is:

welfare(fj’\/lwveﬁzhwzn ,0) > OPTy —e— 4

nlogd
de?
16logd(logm + 1) /€ bounded length signaling scheme
that obtains welfare within € + 0 of the optimal welfare
obtained by any bounded length signaling scheme.

where m = 6( In particular, it s a

Proof. Independently for every w € €, consider s =
s(w) = fMW.e.zy ...z, (W), and let &7 = HTF1(s). For
any bidder 4, let S; = {w : [(w,v;) — @TT1(s),v;)] <
€/2} be the set of goods whose value to bidder ¢ differs
by less than e from the value of good @7 +!. By Theorem
3.3, Prjplj € Si|s] > 1—4§/n and so by a union bound
Pr; ,[Vi,j € S;|s] > 1 —§ and we can calculate for all
i:

v;|s(w)

Ejplvi(9)]f () = sl
= > ) -Prij|f(j) = s

JEQ

Y,
&
—
.
S~—"
T
=
=N
~
<
\
&,

jes
> 5;161?%(3) Prfj € S|f(j) = 5]
> (viw) —€)-(1-9)

> vi(w)—e—=9¢

where the last inequality follows from the fact that
v;(w) < 1. Finally, we can lower bound the expected
welfare of the multiplicative weights signaling scheme,
and compare it to the unconstrained optimal welfare.
For all v:

welfare(firw, e 2y ooz ¥) = Prli=w] maxvi|s(w)
we
> P = . ) —e—6
> > Prii=u] max (v;(w) — € = 6)
weN
= OPTy—ec—3

REMARK 5. We make two remarks about our multi-
plicative weights signalling scheme: first, the guarantees
hold pointwise — that is, even conditioned on the real-
ization of the good. Second, the technique easily extends
to bidders whose values are drawn independently but not
identically. If each bidder has a valuation drawn from a
unique distribution, we simply need to run the algorithm
with m samples drawn from each distribution. This in-
creases the number of samples needed by a factor of n,



but only increases the communication needed by the sig-
nalling scheme by an additive logn.

3.2 Subspace Valuations In this section, we use a
version of the Johnson Lindenstrauss lemma, for ma-
trices implicitly defined by limited independence fami-
lies of hash functions, to give bounded space signaling
schemes for “subspace valuations”. Subspace valuations
are defined over a point set € of unit vectors in Eu-
clidean space, and can be seen as a generalization of
the “inner product valuations” considered in the previ-
ous section®. An agent may specify up to k points in
), which indicates that he is equally happy with any
linear combination of these k points (i.e. his k points
define a subspace). His value for a good is defined to
be its distance to this subspace. The Johnson Linden-
strauss lemma lets us take a “projection” of the point
into a lower dimensional space, in such a way that with
high probability, each agent is able to estimate its value
with high probability. We use the fact that limited in-
dependence JL matrices can be concisely represented —
this allows us to construct a new projection matrix for
every good, and include its description as part of our
signal. This allows us to give a strong Bayesian guar-
antee — our algorithm achieves close to optimal welfare
against any (arbitrarily correlated) prior value distribu-
tion, even without knowledge of the distribution. In-
deed, our algorithm works even against adversarially
selected goods w € (2, that need not be drawn from any
distribution!

Let @ = {w € R? : ||w||2 = 1} be the set of d di-
mensional unit vectors in Euclidean space. Individuals ¢
have valuation functions parameterized by ¢; orthogonal
unit vectors zi,...,z; for some ¢; < k. These vectors
define a subspace S; = span(zi, ..., z}i), and the value
that agent 7 has for a good w is the distance between w
and agent ¢’s subspace S;:

vw)=1-dw,S;) =1 —£?|\x—w|\2

For each agent i, we can think of the vectors 2%, ... ,zf}i
as specifying up to k “ideal” goods, and that agent i is
equally happy with any linear combination of his ideals.
His valuation for a good w drops off with the distance

from w to his set of ideal goods. Note that it is not

6The class of valuations may be seen as a generalization of
inner product valuations, but the signaling scheme here works
in a different range of parameters as the multiplicative weights
signaling scheme. Specifically, for the multiplicative weights
signaling scheme, we assumed that €2 consisted of the set of unit
vectors in ¢1 space, and that valuation functions were defined by
unit vectors in oo space. In this section, both points w € 2, and
the vectors which parameterize agent valuation functions are unit
vectors in 3 space.

necessary that agent i actually specify orthogonal goods
— if his ideal goods zi,...,z; are not orthogonal, we
can simply orthonormalize them (using, say, the Gram
Schmidt algorithm), which does not alter the subspace
that they define.

We recall that for any w, argmingeg, ||z — wl||2 =

S (w, 28 d(w,S;) =
NEE SN O

To achieve a low space signaling scheme for
subspace valuations, we make use of the Johnson-
Lindenstrauss lemma.

We will use (a corollary of) a limited-independence
version of the Johnson-Lindenstrauss lemma presented
in [KN10], first proven by [Ach0l, CW09]. This ver-
sion of the lemma holds even for concisely represented
projection matrices, which allows us to communicate
the projection matrix itself as part of our signal. The
advantage of doing this is that our algorithm will get
strong utility guarantees even in the prior free setting,
when valuation functions can be drawn from a worst-
case (arbitrarily correlated) prior on distributions, and
goods can be selected by an adversary, rather than being
drawn from any distribution.

- zj, and so we can write:

COROLLARY 3.3. ([AcHO1, CW09, KN10]) For d >
0 an integer and any 0 < €,6 < 1/2, let A be a
T x d random matriz with :I:l/\/T entries that are
r-wise independent for T > 4 - 64%¢ 2log(1/5) and
r > 2log(1/8). Then for any r,w € R%:

Pr|((Az), (Ay)) = (z,w)| = S (llall5 + [|lwll3)] < 20

€
2

Input: An instance w € .
Output: A bounded length signal s.

1: Generate a T X d random il/\/f—valued matrix A
with r-wise independent entries for r = 2log(3nk/¢)
and T — 131072k2i0g(3n/6).

2: Let w = Ay and let &' = & discretized to log(3d/e)
bits of precision.

3: Let s = (4,&).

Algorithm 3: Algorithm for computing the signal
SIL ke

REMARK 6. The matriz A in our algorithm will be im-
plicitly represented by a hash function mapping coordi-
nates of the matriz A to their values. There are various
ways to select a hash function from a family of r-wise in-
dependent hash functions mapping [T'xd] — {0,1}. The
simplest, and one that suffices for our purposes, is to se-
lect the smallest integer s such that 2° > T x d, and then




to let g be a random degree r polynomial in the finite
field GF[2%]. Selecting and representing such a function
takes time and space O(r - s) = O(r(logd +1ogT)). ¢
s then an unbiased r-wise independent hash function
mapping GF[2°] — GF[2°]. Taking only the last output
bit gives an unbiased r-wise independent hash function
mapping [s x d] to {0,1}, as desired.

We first observe that fj1, ;. generates bounded length
signals.

OBSERVATION 7. fjp ke i an n-bounded length signal-
ing scheme for:

0 ( k2 log(n/j 98(/€) (10 d + log(k log(n/ 6)))>

Proof. This follows directly from our choice of r and T,
the fact that A can be represented using O(r(logd +
logT)) bits, and the fact that we discretize each coor-
dinate of @ to log(3d/e) bits of precision.

We now show that fjr, ;. is welfare competitive
with the optimal unconstrained signaling scheme.

THEOREM 3.5. Let OPTy = Y. oPrjuli = ] -
max; e[y vi(w) denote the optimal social welfare in the
unconstrained setting. For every distribution D over
subspace valuation functions and every distribution p
over goods w € §,

welfare(f i1 k,e,v) > OPTy — €

In fact, for every v, this guarantee holds pointwise for
goods w € Q even if adversarialy chosen. For all w € €,

for s = fJL,k,e(W) :

max

X x(J, 8)p;vi(j) > maxv;(w) — €
i€n

prere! i€[n]
Proof. Tt suffices to prove the second, stronger claim.
Fix a good w € Q and let fiLg(w) = s = (A,&").
For each bidder i, define S;(A4,0,0) = {z € Q :

V1= S0yt 2)? = 1= S, @ 4202 < 6} By
our choice of T, we have: Pr{w ¢ S;(4,%,¢/3)] < €/3n,
where the probability is taken over the choice of projec-
tion matrix A Moreover, by our choice of discretization,
we have S;(A4,@,¢/3) C S;(A,&',2¢/3). Therefore by a
union bound: Pr[3i: w & S;(A, &', 2¢/3)] < ¢/3. There-
fore, for all i:

ST 2@, s)pjvi) > > (4, 8)p;jvi(4)
JEQ JES; (A,&7,2¢/3)
> min v; (7) Z z(J, s)pj
€S (A.0!,2¢/3) JES;(A,@!,2¢/3)
> (vi(w) — 2¢/3) Prlw € S;(A,&’,2¢/3)]
> vi(w) —e

4 Constrained with

Valuations

Signaling Arbitrary
In this section we present both positive and negative
results for welfare and revenue maximization for sig-
naling with bipartite and communication constraints,
without making assumptions on the structure of the
valuations. In the known valuations case, we show the
existence of a 1 — 1/e approximation algorithm for wel-
fare maximization in bipartite signaling, and a constant
approximation algorithm for revenue maximization in
communication-constrained signaling. Our results ex-
tend to the unknown valuations case when the Bayesian
prior D has constant-size support. Finally, we show
that even in communication-constrained signaling with
known valuations, approximating welfare or revenue to
a factor better than 1 — 1/e is N P-hard.

In a bipartite signaling problem, the set of valid
signaling maps is represented explicitly as a bipartite
graph with Q on the left hand side, S on the right hand
side, and a set of edges £ C 2 x S, as well as an integer
k(= 2Y). A signaling map f € S%isvalid if (5, f(j)) € E
for each j € 2, and moreover |f(Q)| < k = 2° (i.e., the
signals can be communicated with at most b bits). We
refer to the edge set E as the bipartite graph constraint,
which limits the compatible signals with each item, and
the integer k as the communication constraint, which
limits the total number of signals used. To ensure
the existence of at least one feasible signaling map and
simplify our results, we assume that in instances with
k < |S], there exists a “no information” signal sy € S
such that (4, s9) € E for all items j € Q.

4.1 Welfare Maximization with Known Valua-
tions In the known valuations setting, we show the ex-
istence of a polynomial-time, e/(e — 1)-approximation
algorithm for welfare maximization in bipartite signal-
ing. Formally, we prove the following result.

THEOREM 4.1. For bipartite signaling with known val-
uations, there is a randomized, polynomial-time, e/(e —
1)-approzimation algorithm for computing the welfare-
mazrimizing signaling scheme.

As a warmup, in Section 4.1.1, we show that the
special case of bipartite signaling without the commu-
nication constraint reduces almost directly to combina-
torial auctions with XOS valuations. We then extend
the result to the general case in Sections 4.1.2 and 4.1.3
through a non-trivial reduction to submodular function
maximization subject to a matroid constraint.

4.1.1 A Special Case: Without the Communi-
cation Constraint We show that welfare maximiza-
tion in bipartite signaling with known valuations and



without a communication constraint — i.e. with k& = |S|
— reduces to welfare-maximization in combinatorial
auctions” with explicitly-represented XOS valuations,®
which can be approximated to within a factor of %5 as
shown by Dobzinski and Schapira [DS06].

We are given a set of items €2, a distribution p € Agq
on items, a set of signals S, a bipartite graph £ C QO xS,
and known valuations vy,...,v, € R®%. As in Section
2, we use 0;(j) = p;vi(j) as shorthand. A valid
deterministic signaling scheme f : Q — § partitions
the items ) among signals S — we let By = f~1(s)
denote the “bundle” of items mapped to signal s € S.
Appealing to Equation (2.1), the welfare of f can then
be written as:

ZI?EB«IX Z 0i(J)-

seS JEBS

This can be extended to arbitrary partitions of the items
— i.e. partitions not necessarily respecting the bipartite
graph — by letting ws;; = 0;(j) for (4,s) € E, and
wsi; = 0 for (j,s) € E, and defining:

wel fare(B) = Zm;zlllx Z Weij-

sES JjE€EBs

Since the weights w,;; do not reward assignments of
items to signals not respecting the bipartite graph,
finding the welfare-maximizing deterministic signaling
scheme reduces to finding a partition B of items among
signals maximizing wel fare(B).

We observe that this is an instance of combinato-
rial auctions with XOS valuations. Namely, if we in-
terpret the signals S as the “bidders” in combinato-
rial auctions, and B, as the “bundle” of items assigned
to s, the valuation function of s is simply the XOS
function f(A) = max} ZjeA Wg;j. Welfare maximiza-
tion in combinatorial auctions, when players have XOS
valuations written explicitly, admits an e/(e — 1) ap-
proximation algorithm that runs in polynomial time, as
shown in [DS06]. When combined with Lemma 2.1, this
proves Theorem 4.1 in the absence of a communication-
bounded constraint.

In combinatorial auctions, there is a set M of items and
a set N of players. Each player is equipped with a wvaluation
mapping subsets of M to the real numbers. Welfare maximization
in combinatorial auctions is the problem of assigning the items to
the players in order to maximize the sum of the players’ values
for their assigned bundle of items.
8A set function f : 2X — R is called XOS if it can be
written as the maximum of additive set functions. Specifically, if
f(A) = maxF_, ZjeA w;; for some integer k, and weights w;; € R
for i € [k] and j € X. We say an XOS function is represented
explicitly if the weights w;; are given as input.

4.1.2 The General Case: Reduction to Opti-
mization over Mappings We now consider the bipar-
tite signaling problem with a cardinality constraint k£ on
the number of signals used. As should be clear from Sec-
tion 4.1.1, the general case of bipartite signaling reduces
to a generalization of combinatorial auctions with XOS
valuations — namely, with the additional constraint
that at most k£ players win any items in the combinato-
rial auction. We are not aware of previous work on this
problem, and therefore design an e/(e — 1) algorithm
for bipartite signaling directly. We break our proof in
two parts: first, in this section we show that computing
an approximately welfare-maximizing scheme reduces to
“guessing” the mapping from signals to winning players,
then in Section 4.1.3 we show how to express optimiza-
tion over these mappings as submodular function maxi-
mization subject to a matroid® constraint, which admits
an ¢/(e — 1) approximation algorithm by the result of
[Von08].

We begin by observing that every signaling scheme
induces a many-to-one mapping w : § — [n]U{x}, which
maps each signal to the winning player given that signal,
where * denotes an unused signal. For determinstic
signalling schemes that are valid for our instance of
bipartite signalling, w(s) = = for all but at most k
signals s. We call such mappings w feasible winner
mappings. We reduce the problem of computing a near
optimal signalling scheme to an optimization problem
over feasible winner mappings w.

Given a “guess” for the feasible mapping w asso-
ciated with the welfare-maximizing signalling scheme,
computing a deterministic optimal signalling scheme is
trivial: each item j € ) is mapped to a winning player
who likes it most subject to respecting the bipartite
graph E. Formally, for every mapping w : S — [n]U{x}
where w(s) # « for at most k signals, we let f, : @ = S
be a deterministic signalling scheme satisfying

fw(i) €

argmax

VU (s) (])
s:(4,8)EE,w(s)#x*

for items j where such a signal s exists, and f,(j) is the
“no information” signal sy € S otherwise (recall that
Sp is a valid signal for all items, see Section 2). The
social welfare of signalling scheme f,, is, by appealing
to Equation (2.1), at least

wel fare(w) = Z Z Vu(s) ()

sw(s)7x jefu’(s)

YRecall a matroid (e.g. [Ox192]) is a ground set X and a non-
empty collection Z C 2% of independent sets such that: (i)
whenever S is independent and T' C S, T is also independent;
(ii) whenever S,T € Z with |T| < |S|, there is some z € S\ T

such that TU {z} € 7.



Reversing the order of summation, and observing that
fw maps j to a signal maximizing v, (j) subject
to respecting the bipartite graph, gives the following
equivalent expression for wel fare(w):

(4.2) welfare(w) = Z

jeQ

Vu(s) (j)> .

( max
s:(4,8)EE,w(s)#*

The social welfare of f,, is at least wel fare(w). Note,
however, that f,, may be infeasible, in that it may use
up to k+ 1 signals including so — however, in that case
w(sg) = *, and therefore a feasible signalling scheme
with welfare at least wel fare(w) can be gotten by sim-
ply choosing an arbitrary signal s # so with w(s) # *,
and reassigning all items f,,*(s) to the “no information”
signal sg. Moreover, when w is the mapping associated
with the welfare-maximizing valid signalling scheme, f,,
is a welfare maximizing valid signalling scheme with wel-
fare exactly equal to wel fare(w). Therefore, finding an
approximately welfare-maximizing signalling scheme re-
duces to finding a mapping w approximately maximiz-
ing welfare(w). We summarize this in the following
Lemma.

LEMMA 4.1. Fix o > 0. Computing an «-
approximately welfare maximizing bipartite signalling
scheme reduces, in polynomial time, to computing a
feasible winner mapping w : § — [n] U {x} which
a-approzimately mazimizes wel fare(w), as given in
Equation (4.2).

4.1.3 The General Case: Optimization over
Feasible Winner Mappings We now show how to
find a feasible winner mapping w : § — [n] U {*}
which approximately maximizes wel fare(w), as given in
Equation (4.2). We do so by posing this as a submodu-
lar function'® maximization problem subject to a trun-
cated partition matroid'! constraint, and invoking the
result of Vondrak [Von08] which shows a polynomial-
time e/(e — 1)-approximation algorithm for submodular
function maximization subject to an arbitrary matroid.

Recall that we defined a winner mapping w as
feasible if w(s) # * for at most k signals s € S. In

T0A function f : 2V — R defined on all subsets of a finite non-
empty set U is submodular if

FSU{i}) = £(5) < (T U{a}) — A(T)

forevery TCSCUandi¢ S.

A truncated partition matroid (see [0x192]) is a matroid (U, I)
with the following structure. There exists a partition Uy, ...,Um
of ground set U, integers ki, ..., km, and an integer k, such that a
subset S of U is independent, i.e. isin I, if and only if [SNU}| < k;
for all j € 1,...,m, and moreover |S| < k.

order to pose our optimization problem as a constrained
submodular maximization problem, we first relax the
set of feasible mappings as follows. We consider many-
to-many mappings W C S X [n] from signals to players,
and define the welfare of such a mapping W as follows:

4.3) welfare(W) = max v;(7) ).
( ) f ( ) Z (i,s:(j,s)GE,(s,i)EW (j))

JEQ

In other words, each item j may be assigned to a player
i so long as there is a signal s that is valid for j, and ¢
as one of the “winning” players of s as given by W; the
welfare-maximizing such assignment is used to calculate
wel fare(W).

When W is a many-to-one mapping — i.e. assigns
to each signal s at most one winning player w(s) —
it is easy to verify that wel fare(W') (Equation (4.3)) is
equal to wel fare(w) (Equation (4.2)). Moreover, many-
to-one maps W satisfying |[W| < k are in one-to-one
correspondance with the set of feasible winner mappings
w : § = [n] U {x}, where feasibility is as defined in
Section 4.1.2. It is simple to verify that the family of
subsets W of S x [n] satisfying those two constraints is
a truncated partition matroid on ground set S X [n].

We now show that wel fare(W) is submodular. We
define for each j € Q and (s,7) € [S] X [n] a weight
wsij = V;(j) when (j,s) € E, and wy;; = 0 otherwise.
We then rewrite wel fare(W) as follows.

(4.4) wel fare(W) =

Observe that welfare(W) is the sum of |Q set
functions, namely the functions welfare;(W) =
max s ;)ew Wsij for all j € . Tt is known, and easy to
verify, that any set function f : 2%X — R that simply as-
sociates a fixed weight w, with each element x € X, and
evaluates to f(S) = max,es w,, is submodular. There-
fore, by extension, wel fare;(W') is submodular for each
j. It is also well known that submodular functions are
closed under summation. Therefore, we conclude that
wel fare(W) is submodular.

Since wel fare(W') is submodular, and moreover the
set of W corresponding to feasible winner mappings is
a matroid, invoking the the result of Vondrak [Von08]
yields the followin Lemma.

LEMMA 4.2. There is a polynomial-time e/(e — 1) ap-
prozimation algorithm for computing a feasible winner
mapping w mazimizing wel fare(w), as given in Equa-
tion (4.2).

Combined with Lemma 4.1, this completes the proof of
Theorem 4.1.



4.2 Revenue Maximization with Known Valu-
ations Next we show that, in the case of known val-
uations, there is a polynomial-time, constant factor
approximation algorithm for revenue maximization in
cardinality constrained signaling. Our algorithm (Al-
gorithm 4) simply chooses the best of two signaling
schemes, computed via procedures 5 and 6. We use
OPTR and OPTW to denote the maximum revenue and
welfare, respectively, of a communication-constrained
signaling scheme, and v;(¥) = E;~,v;i(j) to denote
player i’s value for a random item. Moreover, we let
v* = max;v;(x) denote the maximum value of a player
for a random item, and let * be the player attaining
this maximum. We note that v* upper-bounds the con-
tribution of any individual player to the social welfare
of any signaling scheme.

Input: Instance of cardinality constrained signaling,
given by €, k, valuations vy, ..., v,
Output: Signaling scheme z*
1: Run Procedure 5 to compute deterministic signaling
scheme g.
2: Run Procedure 6 to compute signaling scheme z.
3: Let * be the revenue-maximizing signaling scheme
among ¢ and x

Input: Instance of cardinality constrained signaling,
given by 2, k, and prior D over valuations vy, ..., v,
Output: Signaling scheme x

1: Exclude *, then compute a deterministic signal-
ing scheme h approximately maximizing welfare
for other players (Section 4.1). Let welfare(h)
denote its welfare (excluding i*), and let v, =
MaX;4- Ejeh,l(s) 0;(j) denote the contribution of
signal s to the welfare.

2: Let o = v*Jwel fare(h).

3: Let y be the signaling scheme which ignores the real-
ization of the item, and outputs signal s with prob-
ability a7s. (It is easy to verify the probabilities
sum to 1).

4: Let = be the signaling scheme which with probabil-
ity 0.5 runs h, and with remaining probability 0.5
runs y.

Algorithm 4: Algorithm for Communication-

constrained Signaling

Input: Instance of cardinality constrained signaling,
given by €, k, valuations vy,...,v,
Output: Deterministic signaling scheme g : Q — [k]

1: Compute a deterministic signaling scheme which
approximately maximizes welfare (Section 4.1).

2: Repeatedly merge pairs of signals with the same
winner, until each signal has a unique winner. Call
the resulting signaling scheme f.

3: Sort the signals in decreasing order of their contri-
bution to the social welfare of f: sq,..., sk

4: Let g be the signaling scheme which merges signals
s; and s;41 in f, for all odd i.

Procedure 5: First  Sub-procedure  for

Communication-constrained Signaling

We now provide some intuition for our algorithm.
The signaling scheme computed by Procedure 5 guar-
antees near-optimal revenue when no individual player’s
contribution to the optimal social welfare is too large.
An approximately welfare-maximizing signaling scheme
f is computed as described in Section 4.1, then signals
are sorted in decreasing order of their contribution to
the social welfare, and then pairs of signals are “merged”
in that order. Formally, merging two signals s and ¢ in

Procedure 6: Second  Sub-procedure  for

Communication-constrained Signaling

a deterministic signaling scheme f : Q@ — S gives a new
signaling scheme g with g(j) = {s,t} whenever f(j) = s
or f(j) = t, and g(j) = f(j) otherwise. Merging two
signals s and t is tantamount to forcing the two win-
ners of the auction in each of the signals to compete,
extracting the value of at least one of them as revenue.
Therefore, merging pairs of signals in order of their con-
tribution to the social welfare extracts half the welfare
of all but the most valuable signal in f. When no in-
dividual player contributes much to the social welfare,
this is a constant-factor of the welfare of f.

The signaling scheme computed by Procedure 6,
on the other hand, guarantees near-optimal revenue
when a single player accounts for a large fraction of
the optimal social welfare. In this case, i*’s value
for a random item, namely v*, is on the order of the
optimal social welfare. Procedure 6 first computes
a deterministic signaling scheme h which e/(e — 1)-
approximately maximizes welfare for players other than
1*. Then h is “mixed” with a signaling scheme y which
releases no information — i.e. outputs a random signal
independent of the realization of the item. Here, mixing
two signaling scheme is defined as running each with
equal probability. When the probability of each signal
s in y is proportional to the contribution of s to the
welfare of h, player i*’s value conditioned on s is on
the order of the value of the welfare of h conditioned
on s. Therefore, ¢* serves as a price-setting player for
all signals, extracting a constant fraction of the social
welfare of h in the process. Since, by Lemma 2.3,
the welfare of h is a (1 — 1/e)-approximation to the
maximum revenue of any signaling scheme, this yields




a constant approximation to the optimal revenue.

We now present a formal proof of the approximation
ratio of our algorithm. The result follows from two
Lemmas.

LEMMA 4.3. Fix 8 > 0. If v* < BOPTW, then
signaling scheme g — as computed by procedure 5 —
has revenue at least %OPTW.

Proof. Note that welfare(f) > (1 —1/e)OPTW. It is
an easy observation that Step 2, which merges signals
with the same winning player, preserves the welfare of
I

Our assumption that any player’s value for a ran-
dom item is at most SOPTW implies that signal s;
accounts for no more than SOPTW of the welfare of
f— formally max; 3¢ p-15 0i(j) < v* < BOPTW.
Therefore, signals other than s; account for at least
(1-1/e— B)OPTW welfare in f.

Now, recall that g simply merges pairs of signals in
f. Given two signals s and ¢ in f, merged into a new
signal {s,t} in g, and an arbitrary player i, we observe
that

Z vi(j) =

jeg ({st})

S oai+ Y w0

JEf~(s) JEfTH®)

Intuitively, the conditional value of player i for the new
merged signal, weighted by the probability of the signal,
is equal to the sum of i’s weighted conditional values for
both the component signals. This implies that, given a
merged signal {s,t} in g, each of the (distinct) winners
of s and ¢, which we denote by i; and i, have at least
as much (weighted) value for {s,¢} as they did for s
and ¢ individually. Since the player with the greatest
weighted conditional value for a signal wins, and pays
the second-greatest weighted value in expectation, we
conclude that the contribution of {s,¢} to the revenue
in g is at least the minimum of the contributions of s
and t to the welfare of f.

Recalling that we sorted the signals in f in decreas-
ing order of their contribution to the social welfare, and
then merged them pairwise in that order, we conclude
that the revenue of g is at least half the welfare of f
after discarding s;. Our bound on the contribution of
s1 to the welfare of f then completes the proof.

LEMMA 4.4. If v* > BOPTW, then x — as computed
by procedure 6 — has revenue at least g(l —1/e)OPTR.

Proof. [of Lemma 4.4] First, observe that «, as stated
in procedure 6, is at least 5. Moreover, Lemma 2.3,
combined with the result of Theorem 4.1, shows that
welfare(h) > (1—1/e)OPTR. It remains to show that

x extracts at least a a/2 fraction of the welfare of h in
revenue.

Let is denote the winning player of signal s in
h (after excluding i*). Recall that vs, as defined in
procedure 6, denotes the value of player i, conditioned
on signal s, weighted by the probability of the signal.
Now consider signaling scheme x, which mixes — in
equal measure — signaling scheme h with the scheme
which outputs s with probability aZ+. The (weighted)
value of i, for signal s in z is at least half what it was in
h — namely v, /2. Moreover, the (weighted) value of i*
for signal s is at least his value for a random item times
the probability that signal s is output without regard
to the realized item — doing the calculation, this is
vt Ll =av /2.

Now, in x both i* and i, have (weighted) value
for signal s equal to at least aws/2. Therefore, the
contribution of s to the revenue is at least this amount.
Summing over all signals, the total revenue of = is at
least Swel fare(h). This completes the proof.

. _ el
Setting 8 = 5=

following theorem.

in Lemmas 4.3 and 4.4 proves the

THEOREM 4.2. Algorithm 4 computes a Q(GST)QU ~

8.17 approximation to the optimal revenue in the
communication-constrained signaling problem.

NoTE 8. We note that optimizing Procedure 6 to mix
h and y with probabilities v = /(1 + a) and (1 — ),
instead of 0.5 each, improves the approximation ratio in
our theorem to 6.47. We omut the details.

4.3 Unknown Valuations We largely leave open
the polynomial-time approximability of welfare and
revenue maximization in the unknown valuations set-
ting. Even in the case of welfare maximization in
communication-constrained signaling, it appears chal-
lenging to design approximation algorithms with run-
time scaling sub-exponentially in the support size of D,
the distribution over player valuation profiles. Never-
theless, we present here an extension of the result of
Section 4.1.1 to distributions D with constant size sup-
port. The runtime of the algorithm scales exponentially
in the size t of the support. Moreover, we establish a
connection of this problem to a generalization of the
combinatorial auctions problem used in Section 4.1.1.
We assume the distribution D over valuation pro-
files is listed explicitly as a set of matrices {vl, ey vt}
where v/ € RM*® and associated probabilities
q1,---,q;- Using a similar derivation to that in Sec-
tion 4.1, the welfare of a deterministic signaling scheme



f can be written as

DD aemax Y T

seS (=1 JEF1(s)

Recall that, as described in Section 4.1.1, the variant
with ¢ = 1 can be interpreted as an instance of
combinatorial auctions with players corresponding to S,
who are equipped with XOS valuations. Similarly, the
variant with general ¢ can be interpreted as an instance
of combinatorial auctions where each player’s valuation
is a sum of XOS functions. We are not aware of any
non-trivial polynomial-time algorithms for this problem
that run in time polynomial in ¢ in the computational
complexity model. However, since XOS valuations, and
therefore their sums, are subadditive, the algorithm of
Feige [Fei06] guarantees a 2-approximation if players can
answer demand queries. Unfortunately we can show
that, unlike for XOS functions, answering a demand
query for a sum of XOS functions, even approximately
to within a constant factor, is NP-hard — the proof is
deferred to the full version of this paper. However, this
does not rule out other approaches to our problem not
involving demand queries.

We now show that a 1 — 1/e approximation is
possible in time exponential in ¢, and polynomial in all
other parameters of an instance. We rewrite the welfare
of a signaling scheme f as follows.

t
S Y Yadt)
seS

11,802,050t
JEFT(s) £=1

This, again, is an instance of combinatorial auctions
with XOS valuations, though each XOS function is the
maximum of n' additive functions. The e/(e — 1)-
approximation algorithm of [DS06] then runs in time

polynomial in nt.

4.4 Hardness of Approximation We now show
that our approximation ratio for welfare-maximization
in bipartite signaling is tight, even for the special case
of communication-constrained signaling and known val-
uations. As a corollary, the same hardness of approxi-
mation result holds for revenue maximization. We use
an approximation-preserving reduction from the APX-
hard problem max-cover. An instance of max-cover is
given by a ground set [m], a family A;,..., A, of sub-
sets of [m], and an integer k. The goal is to find k sets
from Ay,..., A, whose union is as large as possible.
Given an instance of max cover, we construct an
instance of communication-constrained signaling with
known valuations as follows. We let the set 2 of items
be [m], and associate with each set A; a player ¢ with

valuation v; : [m] — {0,1} such that v;(j) = 1 if and
only if j € A;. Moreover, we let k& be the constraint
on the number of allowable signals, and let p be the
uniform distribution over €.

Given a solution 4;,, ..., A;, for max-cover covering
m' items, we show a signaling scheme with welfare at
least m’/m. We assign items in A;; to signal 1, then
assign items in A;, \ A;; to signal 2, and so on until
signal k. We observe that, for each signal ¢ € [k], there
is at least one player — in particular player ¢y — who
values at least |A;; \ Up<p A | of the items assigned to
signal ¢. This implies that the welfare of the signaling
scheme is at least -L|US_, A;,| =m'/m.

Conversely, given a signaling scheme with welfare
m’ /m, we show a solution to max-cover with coverage of
at least m’. Each signaling scheme partitions the items
into k subsets By, ..., By, each of which — say By — is
associated with a winning player i,. The welfare of the
signaling scheme is the sum, over all winning players iy,
of the number of items in B, valued by i,, scaled by
the per-item probability of % Formally, the welfare is
LS |As, N Byl. Letting m’ = 3;_, |Ai, N Byl, it is
clear from the fact that By,..., By is a partition of the
items that |Uf_, A;,| > m’, as needed to show a solution
to max-cover with coverage at least m/.

The above reduction, coupled with the hardness
of approximation result for max-cover given in [Fei98],
yields the following thereom.

THEOREM 4.3. There is mno polynomial-time c-
approximation algorithm  for welfare-mazimization
m  communication-constrained signaling with known

valuations, for any constant ¢ < %5, unless P = NP.

The hardness result of Theorem 4.3 also holds for
revenue maximization. This follows from a simple re-
duction from welfare maximization to revenue maxi-
mization: given an instance of cardinality constrained
signaling, produce a new instance whose welfare and
revenue are equal by simply duplicating each player.

COROLLARY 4.1. There is no polynomial-time c-
approximation algorithm for revenue-mazimization in
communication-constrained signaling with known valu-

ations, for any constant ¢ < -%5, unless P = NP.

5 Conclusions and Future Work

Our results initiate the study of signaling in constrained
settings. Whereas we obtain preliminary positive and
negative results for some natural problems in this set-
ting, we leave open a rich selection of algorithmic prob-
lems. We conclude with a statement of several of these
open questions.

We leave several open questions in the bipartite sig-



naling setting. Is there a constant-factor approximation
algorithm for revenue maximization in this setting with
known valuations? What about welfare or revenue in
the unknown valuation setting, for which we obtain no
nontrivial guarantees?

More generally, we leave open structural questions
in constrained signalling problems more generally. We
showed that there always exists a deterministic welfare-
maximizing signaling scheme. What about the rela-
tive power of deterministic and randomized signaling
schemes for revenue mazximization? It was shown in
[EFG*12] that in unconstrained settings, there always
exists a revenue-maximizing scheme with at least half
the optimal welfare. Does such a tradeoff hold in con-
strained signaling problems?

Finally, there are many other natural signaling
problems one may consider. For example, what if
products are given as points in a high dimensional
hypercube or a high dimensional euclidean space, and
an auctioneer must signal a subset of the coordinates?
Problems of this form appear related to deep questions
in learning theory, such as learning k-juntas and others.
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A Proofs and Discussion from Section 2

A.1 Convexity and Determinism Given a con-
strained signaling problem, we observe that welfare is
a convex function of the marginal probabilities x(j, s),
and conclude that the welfare-maximizing constrained
signaling scheme is deterministic. Formally, for every
valid signaling map f € F C S, we associate a vec-
tor z/ € {0,1}**° where 2/(j,s) = 1 if and only if
f(j) = s. A signaling scheme is then associated with a



vector z in the convex hull of {J;f cfe .7:}, and has wel-
fare as given in Equation 2.1. We observe wel fare(x)
is a convex function of x, and invoke the following fact:

Fact A.1. Let P be a polytope in Fuclidean space, and
let g be a convex function. The maximum of g over P
is attained at a vertex of P.

We conclude that there is a welfare-maximizing deter-
ministic signaling scheme.

LEMMA A.1. For any constrained signaling problem
with unknown valuations, there is valid deterministic
signaling scheme which mazximizes expected welfare.

A.2 Communication Constraints and Welfare
When the number of items is finite, we observe a
simple bound the number of signals needed to recover
the maximum possible social welfare in the known
valuations model.

Fact A.2. Consider an n player and m item signaling
problem with known wvaluations. There is a signaling
scheme with at most min(m,n) signals, and welfare
equal to that of the optimal unconstrained scheme.

This follows from the fact that that the scheme that
announces the identity of the item, and the scheme that
announces the identity of the player who values the item
most, are both optimal.

Next, we observe that imposing a communication
constraint of k signals reduces the expected welfare of
the optimal scheme by a factor of k/¢, when ¢ is the
number of signals used in the optimal scheme. Invoking
Fact A.2, this implies that the best k-signal scheme
recovers at least a k/ min(n, m) fraction of the welfare of
the best unconstrained scheme in the known valuations
model.

LEMMA A.2. Consider an n-player and m-item signal-
ing problem of unknown valuations. For every £-signal
scheme x© and k < £, there is a k-signal scheme y such
that wel fare(y) > %wel fare(z).

Lemma 2.2 follows easily from Equation (2.1), which
expresses the welfare of a signaling scheme as the sum
of the contributions of all its signals. To see this, let S’
be the set of k signals with the greatest contribution to
wel fare(zx), and let y be any scheme with signal set &',
satisfying y(j) = x(j) whenever z(j) € S'.

A.3 Relating Revenue and Welfare We now
mention a useful, though elementary, upper bound on
the optimal revenue achievable via a signaling scheme.
This bound follows immediately from the fact that the
revenue of a second price auction is at most the welfare

of the same auction after excluding an arbitrary player,
though we present a proof here for completeness.

LEMMA A.3. Fix an arbitrary constrained signaling
problem with unknown valuations. Let i be an arbi-
trary player. The revenue of the revenue-optimal signal-
ing scheme is at most the welfare of the welfare-optimal
signaling scheme for all players other than i'.

Proof. First, we observe that the revenue can be ex-
pressed as

n
rev(z,v) := Z x(s) ma)l(Z vils,
1=

sES
(A1) =Y _max2 x(j 5)0i(j),
seS  jeq

where max2 denotes selecting the second largest value.
The expected revenue of the auction over draws of the
players’ valuations, which we denote by rev(x), is the
expectation of rev(z,v) over v ~ D.

It suffices to show that rev(z,v) (equation (A.1)) is
at most wel fare(x,v_;) (equation (2.1)).

rev(xz,v) = Z H£>1<2 Z z(j, $)0i(j)

seS JEQ
< Zgﬁx > 20, 9)%i()
seS JjEQ

= wel fare(x,v_;)



