CS170: Discrete Methods in Computer Science
Spring 2025

First Order Logic

Instructor: Shaddin Dughmi'

'These slides adapt some content from similar slides by Aaron Cote.

0 The Language of First Order Logic

Introduction

@ In propositional logic, atomic statements were simply propositional
variables which may be true or false
o We built formulas from them using operators like =, A, V, =-.
@ More generally in math, we want to make statements about a
universe of objects
e E.g. Integers, USC students, graphs, sets, algorithms

@ We need statements that take arguments. These are predicates.

@ The arguments can be constants in the universe, or variables, or
more generally a term.
e E.g. Universe is integers, P(x) could be the predicate “z is even”.
e You can have statements P(1), P(z), P(z +y), P(z?).
@ We can form statements using quantifiers V and 3, in addition to
the usual language of propositional logic
e e.g. 3z—P(z), Ve P(2z), VeIyP(z + y).

The Language of First Order Logic 2/25

@ A predicate is a statement that takes in zero or more arguments
from some universe.
e We usually denote predicates by symbols like P, Q, ..., followed by
arguments in parentheses
e Some predicates with special meaning can be given special
symbols (e.g. =, >,<,...)
@ Examples of predicates and associated universes
e P(n) ="nis odd”, over the universe of integers.
e P(x) ="z lives off campus”, over the universe of USC students
e P(m,n)="m < n”, over the universe of integers

The Language of First Order Logic 3/25

@ A predicate is a statement that takes in zero or more arguments
from some universe.

e We usually denote predicates by symbols like P, Q, ..., followed by
arguments in parentheses
e Some predicates with special meaning can be given special
symbols (e.g. =,>,<,...)
@ Examples of predicates and associated universes

e P(n) ="nis odd”, over the universe of integers.
e P(x) ="z lives off campus”, over the universe of USC students
e P(m,n)="m < n”, over the universe of integers

@ A predicate with zero arguments is just a proposition.
@ A predicate with one or more arguments becomes a proposition
when its arguments are replaced by constants in the universe.

@ Can think of a predicate P(z) as a subset of the universe (a.k.a. a
unary relation), Q(z,y) as a binary relation on the universe, etc.

o But just like we don’t assume we know the truth value of a
proposition, we don’t assume we know the relation.

The Language of First Order Logic 3/25

Universe and Terms

@ In first order logic, there is a universe U and functions on it

e Eg.U=7Z

e There are infinitely many generic functions f, g, ...

e Also special functions relevant to your universe like +, —, x, ...
@ A term stands for something in the universe, such as

o Avariable z, vy, z, ...
@ A constant, which can be

@ a generic symbol like a,b,c,. . .
@ a special symbol like 0,1, —7 for constants you know something about

@ An expression involving variables, constants, and functions, such
asz xy—T7xa,of f((z+1) x g(b)).
@ A predicate is allowed to take in a term for each of its arguments

o Eg. P(x xy—"T7xa, f((x+1) x g(b))) for a 2-argument predicate
on the integers.

The Language of First Order Logic 4/25

Building Formulas

A first-order formula is either
@ A predicate with terms as arguments (Base case)

@ A combination of other formulas using propositional operators
A, V,—, = (Recursive case 1)

@ VxF or dzF for a formula F' (Recursive case 2)

e.g. P(1), P(n?),V¥n (P(n) = P(n?)), Va3yP(x + y) for a unary
predicate P on the integers.

The Language of First Order Logic 5/25

Building Formulas

A first-order formula is either
@ A predicate with terms as arguments (Base case)

@ A combination of other formulas using propositional operators
A, V,—, = (Recursive case 1)

@ VxF or dzF for a formula F' (Recursive case 2)
e.g. P(1), P(n?),V¥n (P(n) = P(n?)), Va3yP(x + y) for a unary
predicate P on the integers.

@ We use parentheses for clarity whenever it is helpful

@ Itis common to always allow the special predicate = on the
universe (makes life easier)

@ A variable in a formula may be free or bound

The Language of First Order Logic 5/25

Free and Bound Variables

@ An occurence of a variable z in a formula can be free or bound

@ Bound: There is a quantifier that tells us whether we should be
checking the formula for all = or only for some x

@ Free: There is no such quantifier, so it’s a “loose reference”

@ A formula with no free variables has a definite truth value (whether
you know it or not), otherwise it does not.

@ We call those formulas closed.

The Language of First Order Logic 6/25

Free and Bound Variables

@ An occurence of a variable z in a formula can be free or bound

@ Bound: There is a quantifier that tells us whether we should be
checking the formula for all = or only for some x

@ Free: There is no such quantifier, so it’s a “loose reference”

@ A formula with no free variables has a definite truth value (whether
you know it or not), otherwise it does not.

@ We call those formulas closed.

Which variables are free or bound in the following examples, with
Odd(z) representing the predicate “x is odd”.

@ Odd(x)

@ Vz Odd(x)

@ YV (Odd(z) = Odd(z + v))

@ Va3y (Odd(z) = Odd(x + y))

The Language of First Order Logic 6/25

@ !llustrative Examples

Let P(z) be “x is mortal” over the universe of all humans
@ Socrates is mortal: P(Socrates).
@ All humans are mortal: Vz P(x)
@ Not all humans are mortal: =V P(x)
@ There is an immortal human: Jz—P(z)

Illustrative Examples 7/25

Let P(z) be “x is mortal” over the universe of all humans
@ Socrates is mortal: P(Socrates).
@ All humans are mortal: Vz P(x)
@ Not all humans are mortal: =V P(x)
@ There is an immortal human: Jz—P(z)
The last two are logically equivalent

Can push a negation through a quantifier, in either direction, while
flipping the quantifier

@ ~dxP(z) =Vz-P(x)

@ VzP(z)=3Jz—P(x)

Illustrative Examples 7/25

Let E(x) be “x is an elephant” and P(x) be “x is pink”, over the
universe of animals at the zoo.

@ Vaz(E(x) A P(x)):

Illustrative Examples 8/25

Let E(x) be “x is an elephant” and P(x) be “x is pink”, over the
universe of animals at the zoo.

@ Vz(E(x) A P(x)): All animals are pink elephants.

Illustrative Examples 8/25

Let E(x) be “x is an elephant” and P(x) be “x is pink”, over the
universe of animals at the zoo.

@ Vz(E(x) A P(x)): All animals are pink elephants.
@ Jx(E(x) A P(x)):

Illustrative Examples 8/25

Let E(x) be “x is an elephant” and P(x) be “x is pink”, over the
universe of animals at the zoo.

@ Vz(E(x) A P(x)): All animals are pink elephants.
@ Jx(E(x) A P(z)): There is a pink elephant.

Illustrative Examples 8/25

Let E(x) be “x is an elephant” and P(x) be “x is pink”, over the
universe of animals at the zoo.

@ Vz(E(x) A P(x)): All animals are pink elephants.
@ Jz(E(x) A P(x)): There is a pink elephant.
@ Vz(E(x) = P(x)):

~— —

Illustrative Examples 8/25

Let E(x) be “x is an elephant” and P(x) be “x is pink”, over the
universe of animals at the zoo.

@ Vz(E(x) A P(x)): All animals are pink elephants.
@ Jx(E(x) A P(z)): There is a pink elephant.
@ Vz(E(x) = P(x)): All elephants are pink.

~— —

Illustrative Examples 8/25

Let E(x) be “x is an elephant” and P(x) be “x is pink”, over the
universe of animals at the zoo.

@ Vx(E(x) A P(z)): All animals are pink elephants.
@ Jx(E(x) A P(z)): There is a pink elephant.

@ Vz(E(x) = P(x)): All elephants are pink.

© 3z(E(z) = P(x)):

Illustrative Examples 8/25

Let E(x) be “x is an elephant” and P(x) be “x is pink”, over the
universe of animals at the zoo.

@ Vx(E(x) A P(z)): All animals are pink elephants.
© 3z(E(z) A P(x)):
@ Vz(E(x) = P(x)): All elephants are pink.

P(z)

@ Jx(E(x) = P(x)): If all animals are elephants, then there must be
a pink one.

There is a pink elephant.

Illustrative Examples 8/25

Let K (z,y) be “x knows y” over the universe of students in this class.
@ VaVy K(x,y):

Illustrative Examples 9/25

Let K (z,y) be “x knows y” over the universe of students in this class.
@ VaVy K(x,y): All students know each other (and themselves)

Illustrative Examples 9/25

Let K (z,y) be “x knows y” over the universe of students in this class.
@ VaVy K(x,y): All students know each other (and themselves)
@ Jxdy K(x,y):

Illustrative Examples 9/25

Let K (z,y) be “x knows y” over the universe of students in this class.
@ VaVy K(x,y): All students know each other (and themselves)
@ Jrdy K(xz,y): Some student knows a student (possibly himself)

Illustrative Examples 9/25

Let K (z,y) be “x knows y” over the universe of students in this class.
@ VaVy K(x,y): All students know each other (and themselves)
@ Jrdy K(xz,y): Some student knows a student (possibly himself)

@ 3u3y K(z,y) A (z #y):

Illustrative Examples 9/25

Let K (z,y) be “x knows y” over the universe of students in this class.
@ VaVy K(x,y): All students know each other (and themselves)
@ Jrdy K(xz,y): Some student knows a student (possibly himself)
@ Jxdy K(x,y) A (x # y): Some student knows a different student

Illustrative Examples 9/25

Let K(z,y) be “x knows y” over the universe of students in this class.
@ VaVy K(x,y): All students know each other (and themselves)
@ Jrdy K(xz,y): Some student knows a student (possibly himself)
@ Jxdy K(x,y) A (x # y): Some student knows a different student

Can switch the order of quantifiers if they are both 3 or both Vv, without
changing the meaning

Illustrative Examples 9/25

Let K(z,y) be “x knows y” over the universe of students in this class.
@ VaVy K(x,y): All students know each other (and themselves)
@ Jrdy K(xz,y): Some student knows a student (possibly himself)
@ Jxdy K(x,y) A (x # y): Some student knows a different student

Can switch the order of quantifiers if they are both 3 or both Vv, without
changing the meaning

@ Vady K(x,y):

Illustrative Examples 9/25

Let K(z,y) be “x knows y” over the universe of students in this class.
@ VaVy K(x,y): All students know each other (and themselves)
@ Jrdy K(xz,y): Some student knows a student (possibly himself)
@ Jxdy K(x,y) A (x # y): Some student knows a different student

Can switch the order of quantifiers if they are both 3 or both Vv, without
changing the meaning

@ Vzdy K(x,y): Everybody knows somebody

Illustrative Examples 9/25

Let K(z,y) be “x knows y” over the universe of students in this class.
@ VaVy K(x,y): All students know each other (and themselves)
@ Jrdy K(xz,y): Some student knows a student (possibly himself)
@ Jxdy K(x,y) A (x # y): Some student knows a different student

Can switch the order of quantifiers if they are both 3 or both Vv, without
changing the meaning

@ Vzdy K(x,y): Everybody knows somebody
@ dxVy K(x,y):

Illustrative Examples 9/25

Let K(z,y) be “x knows y” over the universe of students in this class.
@ VaVy K(x,y): All students know each other (and themselves)
@ Jrdy K(xz,y): Some student knows a student (possibly himself)
@ Jxdy K(x,y) A (x # y): Some student knows a different student

Can switch the order of quantifiers if they are both 3 or both Vv, without
changing the meaning

@ Vzdy K(x,y): Everybody knows somebody
@ JxVy K(x,y): Somebody knows everybody

Illustrative Examples 9/25

Let K(z,y) be “x knows y” over the universe of students in this class.
@ VaVy K(x,y): All students know each other (and themselves)
@ Jrdy K(xz,y): Some student knows a student (possibly himself)
@ Jxdy K(x,y) A (x # y): Some student knows a different student

Can switch the order of quantifiers if they are both 3 or both Vv, without
changing the meaning

@ Vzdy K(x,y): Everybody knows somebody
@ JxVy K(x,y): Somebody knows everybody
@ JyVx K(x,y):

Illustrative Examples 9/25

Let K(z,y) be “x knows y” over the universe of students in this class.
@ VaVy K(x,y): All students know each other (and themselves)
@ Jrdy K(xz,y): Some student knows a student (possibly himself)
@ Jxdy K(x,y) A (x # y): Some student knows a different student

Can switch the order of quantifiers if they are both 3 or both Vv, without
changing the meaning

@ Vzdy K(x,y): Everybody knows somebody
@ JxVy K(x,y): Somebody knows everybody
@ JyVx K(x,y): Somebody is known by everybody

Illustrative Examples 9/25

Let K(z,y) be “x knows y” over the universe of students in this class.
@ VaVy K(x,y): All students know each other (and themselves)
@ Jrdy K(xz,y): Some student knows a student (possibly himself)
@ Jxdy K(x,y) A (x # y): Some student knows a different student

Can switch the order of quantifiers if they are both 3 or both Vv, without
changing the meaning

@ Vzdy K(x,y): Everybody knows somebody

@ JxVy K(x,y): Somebody knows everybody

@ JyVx K(x,y): Somebody is known by everybody
@ Vydxr K(x,y):

Illustrative Examples 9/25

Let K(z,y) be “x knows y” over the universe of students in this class.
@ VaVy K(x,y): All students know each other (and themselves)
@ Jrdy K(xz,y): Some student knows a student (possibly himself)
@ Jxdy K(x,y) A (x # y): Some student knows a different student

Can switch the order of quantifiers if they are both 3 or both Vv, without
changing the meaning

@ Vzdy K(x,y): Everybody knows somebody
@ JxVy K(x,y): Somebody knows everybody
@ JyVx K(x,y): Somebody is known by everybody
@ Vydx K(x,y): Everybody is known by somebody

Illustrative Examples 9/25

Let K(z,y) be “x knows y” over the universe of students in this class.
@ VaVy K(x,y): All students know each other (and themselves)
@ Jrdy K(xz,y): Some student knows a student (possibly himself)
@ Jxdy K(x,y) A (x # y): Some student knows a different student

Can switch the order of quantifiers if they are both 3 or both Vv, without
changing the meaning

@ Vzdy K(x,y): Everybody knows somebody
@ JxVy K(x,y): Somebody knows everybody
@ JyVx K(x,y): Somebody is known by everybody
@ Vydx K(x,y): Everybody is known by somebody

Switching the order of different quantifiers changes the meaning.

Illustrative Examples 9/25

Let H(x,y) be “x has y” when z is a dog and y is a tail.

@ Every dog has a tail: Ve3yH (x,y) (when universe(z) and
universe(y) established in advance)

@ Alternatively: Vz (Dog(z) = Jy (tail(y) A H(x,y))) (too
cumbersome)

@ A better alternative: Vo € Dogs Jy € Tails H(z,y)

Illustrative Examples 10/25

Let Q(z,y, z) be z + y = z over the universe of integers. Which of the
following is true, given what we know about integer arithmetic.

@ VaVy3z Q(z,vy, 2)
@ JzxyVz Q(z, vy, 2)
@ JxVyVz Q(z,vy, z)
@ Vziydz Q(z,vy, 2)
® vyQ(z,y,y)

Illustrative Examples 11/25

Let Q(z,y, z) be z + y = z over the universe of integers. Which of the
following is true, given what we know about integer arithmetic.

@ VaVy3z Q(z,vy, 2)
@ JzxyVz Q(z, vy, 2)
@ JxVyVz Q(z,vy, z)
@ Vziydz Q(z,vy, 2)
® vyQ(z,y,y)

Implicitly, we are proving these starting from everything we know about
about integer arithmetic as our premises.

Illustrative Examples 11/25

e Reasoning in First-Order Logic

Some Examples

Are the following true or false:

Reasoning in First-Order Logic 12/25

Some Examples

Are the following true or false:

Q Vi (P(x) A Q(2)) | VaP(x)

Reasoning in First-Order Logic 12/25

Some Examples

Are the following true or false:
Q Va(P(z) A Q(z)) E VaP(z)
Q VaP(z) E JzP(x)

Reasoning in First-Order Logic 12/25

Some Examples

Are the following true or false:
Q Vz(P(z) A Q(x)) = VaP(x)

Q@ VaP(x) E JzP(x) (we only consider non-empty universes)

Reasoning in First-Order Logic 12/25

Some Examples

Are the following true or false:
Q Vz(P(z) A Q(x)) = VaP(x)
Q@ VaP(x) E JzP(x) (we only consider non-empty universes)

@ Vu(P(2) A Q(x)) = (VeP(2)) A (VaQ(x)

Reasoning in First-Order Logic 12/25

Some Examples

Are the following true or false:
Q Vz(P(2) A Q(2)) | VaP(x)
Q VzP(z) | JxP(x) (we only consider non-empty universes)
Q Vz(P(x) (z)) = VzP(z)) N (VzQ(x))
)

A Q(z))
Q Va(P(z) vV Q(x)) = (VaP(z)) V (VaQ(z))

Reasoning in First-Order Logic 12/25

Some Examples

Are the following true or false:

Q Vz(P(z) A Q(x)) = VaP(x)

Q@ VaP(x) E JzP(x) (we only consider non-empty universes)
@ Va(P(z) AQ(x)) = (VaP(x)) A (V2Q(x))

Q Va(P(z) v Q(x)) (VzP(x)) V (V2Q(x))

Q 3z(P(x) v Q(x)) = (BzP(2)) v (F2Q(x))

Reasoning in First-Order Logic 12/25

Some Examples

Are the following true or false:
Q Vz(P(z) A Q(x)) = VaP(x)

Q@ VaP(x) E JzP(x) (we only consider non-empty universes)

Q Va(P(z) A Q(x)) = (VaP(z)) A (V2Q(x))
Q Va(P(z) vV Q(x)) = (VaP(z)) V (VaQ(z))
Q 3z(P(x) v Q(x)) = (BzP(2)) v (F2Q(x))
Q 3z(P(x) A Q(x)) = (BzP(2)) A (F2Q(x))

Reasoning in First-Order Logic 12/25

Some Examples

Are the following true or false:
Q Vz(P(z) A Q(x)) = VaP(x)

Q@ VaP(x) E JzP(x) (we only consider non-empty universes)

Q Vz(P(x) A Q(x)) = (VeP(x)) A (V2Q(x))

Q Vz(P(x) v Q(x)) | (VaP(x)) V (VaQ(x))

Q Jz(P(z) v Q) = (BaP(x)) v (32Q(x))

Q Jz(P(z) A Q(x)) = BaP(x)) A (F2Q(x))
3

Q Va2IyQ(z,y) F IvaQ(z,y)

Reasoning in First-Order Logic 12/25

Some Examples

Are the following true or false:
Q Vz(P(z) A Q(x)) = VaP(x)

Q@ VaP(x) E JzP(x) (we only consider non-empty universes)

Q Vz(P(z) AQ(7)) = (VaP(x)) A (VoQ(z))
Q Va(P(z) v Q()) | (VoP(z)) V (VzQ(z))
Q Fx(P(z) v Q(x)) = 32P(x)) V (32Q(x))
Q F(P(z) A Q(x)) = (32P(x)) A (F2Q(x))
Q@ V2IyQ(z,y) F IyVzQ(x,y)
Q FvyQ(z,y) F VyIzQ(x,y)

Reasoning in First-Order Logic 12/25

Some Examples

Are the following true or false:
Q Vz(P(z) A Q(x)) = VaP(x)

Q VzP(z) | JxP(x) (we only consider non-empty universes)

Q Vz(P(x) A Q(x)) = (VeP(x)) A (V2Q(x))
Q Vz(P(x) v Q(x)) | (VaP(x)) V (VaQ(x))
Q Jz(P(z) v Q) = (BaP(x)) v (32Q(x))
Q Jz(P(z) A Q(x)) = BaP(x)) A (F2Q(x))

Q V23yQ(z,y) F IyYWaQ(z,y)

Q 3vyQ(z,y) = Vy3eQ(z,y)

Q VadyP(z,y), VaVyVz(P(z,y) A Py, z) = P(z,z))
= Va3y3zP(z,y) A Py, z) A P(x, z)

Reasoning in First-Order Logic 12/25

Syntax vs Semantics

@ Semantics of propositional logic center on truth assignments

e When we give “meaning” to variables, we explicitly or implicitly
assign them a True/False value

e A formula can be thought of as a truth table, or as the family of truth
assignments which satisfy the formula

@ One or more premises semantically entail a conclusion if every
truth assignment which satisfies permises also satisfies conclusion.

o We denoted semantic entailment with |=. For example, we write
A, B = C'if every truth assignment satisfying A and B also satisfies
C.

@ Syntax described valid formulas, and inference rules

e If you can prove a conclusion from some premises using rules of
inference, we say premises syntactically entail the conclusion.

o ltis traditional to write use the symbol F for syntactic entailment.
E.g., we write A, B - C if there is a proof of C from A and B.

Reasoning in First-Order Logic 13/25

Syntax vs Semantics

@ Semantics of propositional logic center on truth assignments

e When we give “meaning” to variables, we explicitly or implicitly
assign them a True/False value

e A formula can be thought of as a truth table, or as the family of truth
assignments which satisfy the formula

@ One or more premises semantically entail a conclusion if every
truth assignment which satisfies permises also satisfies conclusion.

o We denoted semantic entailment with |=. For example, we write
A, B = C'if every truth assignment satisfying A and B also satisfies
C.

@ Syntax described valid formulas, and inference rules
e If you can prove a conclusion from some premises using rules of
inference, we say premises syntactically entail the conclusion.
o ltis traditional to write use the symbol - for syntactic entailment.
E.g., we write A, B I C if there is a proof of C from A and B.
@ We mentioned that for propositional logic with the rules of
inference | showed you, = and I are the same relation!
@ Soundness and completeness.

Reasoning in First-Order Logic 13/25

Syntax vs Semantics

@ First order logic is the same way, except we also have a universe
and functions on it!
@ Semantics:
e Specify a non-empty universe and functions on it, plus truth value
for every proposition (P(a), L(a,b), etc)
@ This is often called a model, structure, or interpretation.
e Premises semantically entail conclusion, in sense of |=, if every
model satisfying premises also satisfies conclusion.
@ Syntax: Valid formulas, and inference rules
e Similarly, syntactic entailment - describes what you can prove
using the rules of inference.

Reasoning in First-Order Logic 13/25

Useful Notation for Inference Rules

@ A formula F' can involve multiple variables, constants, etc.
Variables may be free or bound.
@ When z is a variable, F' is a formula involving x, and ¢ is a term, we
use F(t/x) to denote replacing free occurrences of x in F' with ¢.
@ Examples:
o F'=P(x)
o F(a/x) =
o F(b/y) =
o

Reasoning in First-Order Logic 14/25

Useful Notation for Inference Rules

@ A formula F' can involve multiple variables, constants, etc.
Variables may be free or bound.

@ When z is a variable, F' is a formula involving x, and ¢ is a term, we
use F(t/x) to denote replacing free occurrences of x in F' with ¢.
@ Examples:
o F=P(x)A (Ve Q(z,y))
o F(a/a) = P(a) A (V2 Q(a,y))
o F(b/y) = P(z) A (Vz Q(x,b))
o F(ly+7)/z) =Ply+7) A (Vz Q(z,y))
@ Caveat: Avoid variable capture, which is when a free variable in ¢
becomes bound after substitution F(¢/x)
e Notlegal: F(z/y) = P(x) A (Vz Q(z, x))
o Instead, rename the quantified variable with fresh symbol first:

Fa/y) = P(x) A (V2 Q(z, 1))

Reasoning in First-Order Logic 14/25

Inference Rules of First-Order Logic

@ Inference rules of propositional logic: (see corresponding lecture)

@ Reorder Quantifiers:
VaVyF = VyVa F

dxdyF = dydz F
@ Quantifier Negation: VzF = JuaF
—JdaF =V F

@ Change of Variables: If F' has x as a free variable but not y
dzF = JyF(y/x)
Ve F =VyF (y/x)

@ Scope change: If F involves free variable x but G does not

(FVG)=(F2F) VG

Reasoning in First-Order Logic

15/25

Inference Rules of First-Order Logic

@ Universal Instantiation:
Vo F = F(t/x)

for any term ¢ (can include variables, constants, functions, etc).
@ Existential Instantiation:

dz F+ F(a/x)

for a fresh (i.e., new, never seen before) constant symbol a.
@ Universal Generalization: If F involves free variable z

FEYzF

Requirement: = must not appear free in the assumptions.
@ Existential Generalization: If F' involves a free variable z, and ¢ is
a constant term (i.e., does not involve any variables)

F(t/z) b JzF

Reasoning in First-Order Logic 16/25

Example of a Formal Proof

@ Premise: Vz (P(z) = Q(x))
@ Premise: 3z P(x)

@ Conclusion: 3zQ(x)

Reasoning in First-Order Logic 17/25

Example of a Formal Proof

@ Premise: Vz (P(z) = Q(x))
@ Premise: 3z P(x)
© P(a) (Existential instantiation, 2)

@ Conclusion: 3zQ(x)

Reasoning in First-Order Logic 17/25

Example of a Formal Proof

@ Premise: Vz (P(z) = Q(x))

@ Premise: 3z P(x)

© P(a) (Existential instantiation, 2)

Q P(a) = Q(a) (Universal instantiation, 1)

@ Conclusion: 3zQ(x)

Reasoning in First-Order Logic 17/25

Example of a Formal Proof

@ Premise: Vz (P(z) = Q(x))

@ Premise: 3z P(x)

© P(a) (Existential instantiation, 2)

Q P(a) = Q(a) (Universal instantiation, 1)
@ Q(a) (Modus Ponens, 3 and 4)

@ Conclusion: 3zQ(x)

Reasoning in First-Order Logic 17/25

Example of a Formal Proof

@ Premise: Vz (P(z) = Q(x))

@ Premise: 3z P(x)

© P(a) (Existential instantiation, 2)

Q P(a) = Q(a) (Universal instantiation, 1)

@ Q(a) (Modus Ponens, 3 and 4)

© Conclusion: 3zQ(x) (Existential Generalization, 5)

Reasoning in First-Order Logic 17/25

Another Example of a Formal Proof

@ Premise: VadyP(x,y)
@ Premise: VaVyVz(P(z,y) A P(y,z) = P(x,2))

@ Conclusion: Vo3y3z (P(z,y) A P(y, 2) A P(z,2))

Reasoning in First-Order Logic 18/25

Another Example of a Formal Proof

@ Premise: VadyP(x,y)
@ Premise: VaVyVz(P(z,y) A P(y,z) = P(x,2))
© 3JyP(z,y) (Universal instantiation, 1)

@ Conclusion: Vo3y3z (P(z,y) A P(y, 2) A P(z,2))

Reasoning in First-Order Logic 18/25

Another Example of a Formal Proof

@ Premise: VadyP(x,y)

@ Premise: VaVyVz(P(z,y) A P(y,z) = P(x,2))
© 3JyP(z,y) (Universal instantiation, 1)

© P(z,a) (Existential instantiation, 3)

@ Conclusion: Vo3y3z (P(z,y) A P(y, 2) A P(z,2))

Reasoning in First-Order Logic 18/25

Another Example of a Formal Proof

@ Premise: VadyP(x,y)

@ Premise: VaVyVz(P(z,y) A P(y,z) = P(x,2))
© 3JyP(z,y) (Universal instantiation, 1)

© P(z,a) (Existential instantiation, 3)

@ JyP(a,y) (Universal instantiation, 1)

@ Conclusion: Vo3y3z (P(z,y) A P(y, 2) A P(z,2))

Reasoning in First-Order Logic 18/25

Another Example of a Formal Proof

@ Premise: VadyP(x,y)

@ Premise: VaVyVz(P(z,y) A P(y,z) = P(x,2))
© 3JyP(z,y) (Universal instantiation, 1)

© P(z,a) (Existential instantiation, 3)

@ JyP(a,y) (Universal instantiation, 1)

Q P(a,b) (Existential instantiation, 5)

@ Conclusion: Vo3y3z (P(z,y) A P(y, 2) A P(z,2))

Reasoning in First-Order Logic 18/25

Another Example of a Formal Proof

@ Premise: VadyP(x,y)

@ Premise: VaVyVz(P(z,y) A P(y,z) = P(x,2))
© 3JyP(z,y) (Universal instantiation, 1)

© P(z,a) (Existential instantiation, 3)

@ JyP(a,y) (Universal instantiation, 1)

Q P(a,b) (Existential instantiation, 5)

@ P(z,a) A P(a,b) (Conjunction, 4 and 6)

@ Conclusion: Vo3y3z (P(z,y) A P(y, 2) A P(z,2))

Reasoning in First-Order Logic 18/25

Another Example of a Formal Proof

@ Premise: VadyP(x,y)
@ Premise: VaVyVz(P(z,y) A P(y,z) = P(x,2))
© 3JyP(z,y) (Universal instantiation, 1)
© P(z,a) (Existential instantiation, 3)
@ JyP(a,y) (Universal instantiation, 1)
Q P(a,b) (Existential instantiation, 5)
0 P(x,a) A P(a,b) (Conjunction, 4 and 6)
P(z,a) A P(a,b) = P(x,b) (Universal instantiationx 3, 2)

@ Conclusion: Vo3y3z (P(z,y) A P(y, 2) A P(z,2))

Reasoning in First-Order Logic 18/25

Another Example of a Formal Proof

@ Premise: VadyP(x,y)
@ Premise: VaVyVz(P(z,y) A P(y,z) = P(x,2))
© 3JyP(z,y) (Universal instantiation, 1)
© P(z,a) (Existential instantiation, 3)
@ JyP(a,y) (Universal instantiation, 1)
Q P(a,b) (Existential instantiation, 5)
(x,a) A\ P(a,b) (Conjunction, 4 and 6)
P(z,a) A P(a,b) = P(x,b) (Universal instantiationx 3, 2)
P(z,b) (Modus Ponens, 7 and 8)

@ Conclusion: Vo3y3z (P(z,y) A P(y, 2) A P(z,2))

Reasoning in First-Order Logic 18/25

Another Example of a Formal Proof

@ Premise: VadyP(x,y)
@ Premise: VaVyVz(P(z,y) A P(y,z) = P(x,2))
© 3JyP(z,y) (Universal instantiation, 1)
© P(z,a) (Existential instantiation, 3)
@ JyP(a,y) (Universal instantiation, 1)
G P(a b) (Existential instantiation, 5)
z,a) A\ P(a,b) (Conjunction, 4 and 6)
z,a) A P(a,b) = P(x,b) (Universal instantiationx 3, 2)
P(z,b) (Modus Ponens, 7 and 8)
P(xz,a) A P(a,b) A P(x,b) (Conjunction, 7 and 9)

/\/\/‘\/\

@ Conclusion: Vo3y3z (P(z,y) A P(y, 2) A P(z,2))

Reasoning in First-Order Logic 18/25

Another Example of a Formal Proof

@ Premise: VadyP(x,y)

@ Premise: VaVyVz(P(z,y) A P(y,z) = P(x,2))

© 3JyP(z,y) (Universal instantiation, 1)

© P(z,a) (Existential instantiation, 3)

@ JyP(a,y) (Universal instantiation, 1)

Q P(a,b) (Existential instantiation, 5)

0 P(x,a) A P(a,b) (Conjunction, 4 and 6)
P(z,a) A P(a,b) = P(x,b) (Universal instantiationx 3, 2)
P(z,b) (Modus Ponens, 7 and 8)

@ P(x,a) A P(a,b) A P(z,b) (Conjunction, 7 and 9)

@ Jy3zP(x,y) A P(y, z) A P(x, 2) (Existential Generalizationx2, 10)

@ Conclusion: Vo3y3z (P(z,y) A P(y, 2) A P(z,2))

Reasoning in First-Order Logic 18/25

Another Example of a Formal Proof

@ Premise: Va3yP(x,y)

@ Premise: VaVyVz(P(z,y) A P(y,z) = P(x,2))

© JyP(z,y) (Universal instantiation, 1)

© P(z,a) (Existential instantiation, 3)

@ JyP(a,y) (Universal instantiation, 1)

e P(a,b) (Existential instantiation, 5)
P(z,a) A P(a,b) (Conjunction, 4 and 6)
P(z,a) A P(a,b) = P(x,b) (Universal instantiationx3, 2)
P(z,b) (Modus Ponens, 7 and 8)

@ P(x,a) A P(a,b) A P(z,b) (Conjunction, 7 and 9)

@ 3Jy3zP(x,y) A Py, z) A P(z, z) (Existential Generalizationx2, 10)

@ Conclusion: Vo3y3z (P(x,y) A P(y, 2) A P(z,2))
(Universal Generalization, 11)

Reasoning in First-Order Logic 18/25

The Role of Formal Proofs

@ In the real world, we don’t usually write fully formal proofs using
inference rules for purposes of discovering or communicating
mathematical ideas.

e Too tedious to write or read.

@ Instead, we write proofs in common language, along with math
terminology and notation, that strike a balance between rigor and
convenience/legibility.

o Like we’ve been doing most of the class.

@ Exceptions: Computer-aided theorem proving, particularly for
results that are controversial and/or groundbreaking.

Reasoning in First-Order Logic 19/25

The Role of Formal Proofs

@ |deally, your reader should be able to convert your common proofs
to fully formal ones with a lot of tedious work, but without ingenuity.

@ Therefore, it's good to see these fully formal proofs once or twice
in your life, and that’s what we’re doing.

@ You can rest assured | won’t expect too much of you in this regard.

@ Also, knowing how formal proofs work helps us understand how
math is built up, and why it all sits on solid ground.

Reasoning in First-Order Logic 19/25

Soundness and Completeness

Recall the following two properties of a logic with rules of inference.

@ Soundness: If there is a proof that starts with a set of assumptions
and derives a conclusion, then every model satisfying the
assumptions also satisfies the conclusion.

o IOW: Syntactic entailment () implies semantic entailment (=).
o Informally: “Everything you prove is in fact guaranteed to be true.”

@ Completeness: If a conclusion holds in every model satisfying the
assumptions, then there is a proof which starts with those
assumptions and derives the conclusion.

o IOW: Semantic entailment (=) implies syntactic entailment ().
o Informally: “Everything guaranteed to be true has a proof.”

Reasoning in First-Order Logic 20/25

Soundness and Completeness

Just like in propositional logic, we have

First-Order Logic, with the inference rules | showed you, is both sound
and complete.

In other words: The conclusions you can prove are precisely those
guaranteed to hold in every model satisfying your assumptions.

Reasoning in First-Order Logic 21/25

Soundness and Completeness

Just like in propositional logic, we have

First-Order Logic, with the inference rules | showed you, is both sound
and complete.

In other words: The conclusions you can prove are precisely those
guaranteed to hold in every model satisfying your assumptions.

Not to be confused with the Gddel’s Incompleteness Theorems (which
you may or may not have heard of). Those are different!

We will get back to this fascinating story later . ..

Reasoning in First-Order Logic 21/25

e Formalizing Mathematics Using Logic

Formalizing Mathematics

@ We now have this logical system, first-order logic (FOL) with some
inference rules, which seems to check checks all the boxes
e Kinda simple and natural
e Sound
o Complete
@ We build theories on top of it to describe various areas of math
e Natural numbers and arithmetic on them (addition, multiplication)
Calculus
Linear Algebra
Probability and statistics
Computation

Formalizing Mathematics Using Logic 22/25

Mathematical Theories

@ Theory: A logical system (e.g. FOL), plus some axioms that
describe the objects you want to study

Formalizing Mathematics Using Logic 23/25

Mathematical Theories

@ Theory: A logical system (e.g. FOL), plus some axioms that
describe the objects you want to study

Example: Theory of

Designate special functions + and x, special constants 0 and 1.
Axioms:

@ Anything plus zero isitself: Vz 0 + z = x
@ Anything times 1 isitself: Vz 1 x z =z
@ Addition is commutative: VaVy x +y =y + x

@ Multiplication distributes across addition:
VaVyVz x X (y+2) =z Xy+x X 2

@ A dozen or so more ...

@ Induction: For every predicate P:
(P(0) AVz(P(z) = P(z+1))) = (VxP(x))

Technically a schema of infinitely many axioms, but that’s OK.

Formalizing Mathematics Using Logic

v
23/25

Mathematical Theories

@ Theory: A logical system (e.g. FOL), plus some axioms that
describe the objects you want to study

@ There are many other theories: Linear algebra, group theory,
computability theory, set theory, ...

@ Usually the axioms are self evident, needing no further
justification.
@ Furthermore, we ideally want axioms that are
e Consistent: Don’t have inherent contradictions
o Effective: Not too many, or at least can be “enumerated” by an
algorithm
o Complete (different meaning of the word): Fully describe the
objects you want to study, so that every statement can proven
either true or false.

Formalizing Mathematics Using Logic 23/25

Incompleteness of Mathematical Theories

Sadly, we are out of luck. . .,

Godel's Incompleteness Theorem

Any theory which is consistent, effective, and powerful enough to
express arithmetic on the natural numbers, must be incomplete!

Formalizing Mathematics Using Logic 24/25

Incompleteness of Mathematical Theories

Sadly, we are out of luck. . .,

Godel's Incompleteness Theorem

Any theory which is consistent, effective, and powerful enough to
express arithmetic on the natural numbers, must be incomplete!

@ Kills a lot of theories you would want, since other areas of math
include arithmetic inside (e.g. computability, linear algebra, etc)

Formalizing Mathematics Using Logic 24/25

Incompleteness of Mathematical Theories

Sadly, we are out of luck. . .,

Godel's Incompleteness Theorem

Any theory which is consistent, effective, and powerful enough to
express arithmetic on the natural numbers, must be incomplete!

@ Kills a lot of theories you would want, since other areas of math
include arithmetic inside (e.g. computability, linear algebra, etc)
@ How to reconcile this with soundness & completeness of FOL?
@ You can’t ever write a long enough list of axioms in FOL to “narrow
things down” to the “true” model of natural numbers.
o Therefore, there will be statements that are true in some model of
your theory but false in another
e Therefore, by soundness, you can’t prove the statement or its
negation from the axioms of your theory

Formalizing Mathematics Using Logic 24/25

Incompleteness of Mathematical Theories

Sadly, we are out of luck. . .,

Godel's Incompleteness Theorem

Any theory which is consistent, effective, and powerful enough to
express arithmetic on the natural numbers, must be incomplete!

@ Kills a lot of theories you would want, since other areas of math
include arithmetic inside (e.g. computability, linear algebra, etc)
@ How to reconcile this with soundness & completeness of FOL?
@ You can’t ever write a long enough list of axioms in FOL to “narrow
things down” to the “true” model of natural numbers.
o Therefore, there will be statements that are true in some model of
your theory but false in another
e Therefore, by soundness, you can’t prove the statement or its
negation from the axioms of your theory
@ What if we upgrade to more powerful logic, e.g. second-order
logic or higher-order logic?
e Those logics don’t have completeness of inference rules, so you

lose in a different way!
Formalizing Mathematics Using Logic 24/25

ZFC Set Theory

@ Zermelo-Fraenkel set theory, with the axiom of Choice
@ Built on First-order Logic
@ Universe is universe of Sets
e When you say Vx or Jz, z is a set
@ ZFC Axioms: A somewhat short-ish list of properties of sets which
mathematicians have found the most useful
o Look it up if interested.
@ Can encode arithmetic, and pretty much any other math theory
e E.g. The number 3 can be encoded by a set with 3 elements.
o Properties of numbers can be viewed through properties of the sets
encoding them.
e This can be extended to calculus, linear algebra, CS, probability, ...
@ All of modern math is built on ZFC.
@ Sets can encode pretty much any other mathematical object.
e Using this encoding, can prove properties of that object in ZFC.
@ Since different areas of math now have a shared foundation, can
safely port insights and discoveries from one to the other.

@ By incompleteness, this is imperfect, but it's the best we've got!
Formalizing Mathematics Using Logic 25/25

	The Language of First Order Logic
	Illustrative Examples
	Reasoning in First-Order Logic
	Formalizing Mathematics Using Logic

